General Physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization. The mission of the *Journal of General Physiology* is to publish articles that elucidate important biological, chemical, or physical mechanisms of broad physiological significance. ## **ARTICLES** - Functional characterization and molecular cloning of the K⁺-dependent Na⁺/Ca²⁺ exchanger in intact retinal cone photoreceptors. Christophe Paillart, Robert J. Winkfein, Paul P.M. Schnetkamp, and Juan I. Korenbrot - 17 Open channel block by Ca²⁺ underlies the voltage dependence of *Drosophila* TRPL channel. Moshe Parnas, Ben Katz, and Baruch Minke - 29 Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca²⁺ entry, extrusion, ER/mitochondrial Ca²⁺ uptake and release, and Ca²⁺ buffering. Michael Patterson, James Sneyd, and David D. Friel - 57 Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca²⁺ currents, and mechanically activated cation currents in different populations of DRG neurons. Bertrand Coste, Marcel Crest, and Patrick Delmas - 79 Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy. John D. Lueck, Ami Mankodi, Maurice S. Swanson, Charles A. Thornton, and Robert T. Dirksen Cover picture: Photocurrents measured in a dark-adapted single cone isolated from striped bass retina. Peak photocurrent amplitude increases with light intensity up to a saturating amplitude. Current reflects the electrogenic activity of a K^+ -dependent, Na^+/Ca^{2+} exchanger, which causes changes in intracellular free Ca^{2+} , as measured with a fluorescent dye (see article by Paillart et al., 1–16).