Zhang et al., http://www.jgp.org/cgi/content/full/jgp.201311084/DC1

Figure S1. AA activates Ca^{2+} currents in VSMCs. Representative time courses (A) of whole-cell inward currents sampled at -100 mV showing that AA activates an inward Ca^{2+} current in VSMCs bathed in 20 mM of extracellular Ca^{2+} . 50 μ M 2-APB, a CRAC channel blocker, did not block AA-activated currents (F). However, 2-APB at the same concentration abolished CRAC currents activated by store depletion through dialysis of 20 mM BAPTA through the patch pipette (D). Representative I-V curves are shown in B, E, and G, respectively. Statistical analysis on current densities of AA-activated currents and control (without AA) is shown in C. The sample size, mean/range, and p-values for statistical comparisons for this figure and all subsequent supplemental figures are reported in Table S3.

Figure \$2. Orai2 knockdown has no effect on AA-activated currents in VSMCs and HEK293 cells. Quantitative RT-PCR shows Orai2 mRNA knockdown upon transfection of VSMCs with specific siRNA against Orai2 (A; no effect was observed on Orai1 or Orai3 expression). Statistical analyses on data are from three independent transfections, each performed in triplicates. (B–G) Orai2 knockdown (C, VSMCs; F, HEK293 cells) has no effect on AA-activated currents as compared with control siRNA (B, VSMCs; E, HEK293 cells). Representative Na⁺ I-V relationships for AA-activated currents in VSMCs and HEK293 cells are shown in D and G, respectively. Statistical analyses on these data are shown in Fig. 2 (E and I) in the main text.

Figure S3. Validation of Orai1 and Orai3 antibodies by Western blotting. (A) Western blotting using anti-Orai1 antibody on HEK293 cells transfected with either control shRNA, Orai1 shRNA, or a plasmid encoding Orai1 cDNA; the β-actin loading control was performed on the stripped and reprobed membrane. Orai1 and β-actin positions are indicated by blue and black arrows, respectively. (B) Western blotting using anti-Orai3 antibody on HEK293 cells transfected with control shRNA, Orai3 shRNA, or a plasmid encoding Orai3 cDNA; the β-actin loading control is also shown. Orai3 and β-actin positions are indicated by red and black arrows, respectively. The band labeled with the red asterisk is a nonspecific band.

Figure \$4. Orai1 knockdown abrogates store depletion–activated CRAC currents in VSMCs and HEK293 cells. Whole-cell electrophysiological recordings in VSMCs infected with lentiviruses encoding shRNA against Orai1 (shOrai1) or shControl, a nontargeting control. Respective time course of whole-cell inward currents sampled at -100 mV shows that Orai1 knockdown abrogated Na $^+$ /Ca $^{2+}$ CRAC currents (B) as compared with control (A). In HEK293 cells, Orai1 knockdown was achieved by transfection of siRNA targeting Orai1 (siOrai1). siOrai1 significantly inhibited Na $^+$ /Ca $^{2+}$ CRAC currents (F) as compared with siControl (E). Representative Na $^+$ I-V relationships of CRAC currents in VSMCs (C) and HEK293 cells (G) are shown. Statistical analysis on these data is shown in D and H, respectively.

Figure \$5. Orai2 knockdown had no effect on CRAC current in both VSMCs and HEK293 cells. Whole-cell electrophysiological recording in VSMCs (A–D) or HEK293 cells (E–H) transfected with specific siRNA against Orai2 (siOrai2) or siControl, a nontargeting siRNA control. Respective time courses of whole-cell CRAC currents sampled at -100 mV show that Orai2 knockdown had no effect with Na⁺/Ca²⁺ CRAC currents (B, VSMCs; F, HEK293 cells) as compared with control (A, VSMCs; E, HEK293 cells). Representative Na⁺ I-V relationships of CRAC currents in VSMCs and HEK293 cells are shown in C and G, respectively. Statistical analysis on these data is shown in D and H, respectively.

Figure \$6. Orai3 knockdown had no effect on CRAC current in both VSMCs and HEK293 cells. Whole-cell electrophysiological recordings in VSMCs infected with lentiviruses encoding shRNA against Orai3 (shOrai3) or shControl, a nontargeting control. Respective time courses of whole-cell inward currents sampled at -100 mV show that Orai3 knockdown had no effect with Na⁺/Ca²⁺ CRAC currents (B) as compared with control (A). In HEK293 cells, Orai3 knockdown was achieved by transfection of siRNA targeting Orai3 (siOrai3). siOrai3 had no effect with Na⁺/Ca²⁺ CRAC currents (F) as compared with control siRNA (E). Representative Na⁺ I-V relationships of CRAC currents in VSMCs and HEK293 cells are shown in C and G, respectively. Statistical analysis on these data is shown in D and H, respectively.

Figure S7. High concentrations of ETYA do not cause further increase in AA-activated current density in HEK293 cells. Whole-cell patch-clamp electrophysiological recording on HEK293 cells. $8 \mu M$ ETYA and subsequent addition of higher concentration of ETYA (20 and $40 \mu M$) did not cause further increase in AA-activated current density (A). Representative I-V curves taken where indicated by colored asterisks are shown in B.

Figure S8. Cell surface expression of eYFP-STIM and untagged WT STIM1. HEK293 cells expressing either eYFP-tagged on N terminus (A) or untagged WT STIM1 (B) were either left untreated (lane 1) or stimulated with 2 μ M thapsigargin to deplete internal Ca²⁺ stores (TG; lane 3) or the vehicle control (DMSO; lane 2). Untreated cells (lane 1) were lysed, and the whole-cell lysate was analyzed by Western blotting using anti-STIM1 antibody. Cells treated with DMSO or TG were processed to determine PM-resident STIM1 (PM-STIM1) 30 s after the addition of DMSO or TG. Cell surface proteins were biotinylated, extracted with streptavidin-coated agarose beads, and analyzed by SDS-PAGE and Western blotting using the anti-STIM1 antibody. Positions of molecular mass markers are shown on the right of the blots. Data summary is shown in C and is representative of eight (eYFP-STIM1) and six (untagged STIM1) independent experiments.

Figure S9. STIM1 knockdown abolished Na^+/Ca^{2^+} currents in VSMCs. (A) Western blot in VSMCs showing that siRNA targeting STIM1 (siSTIM1) significantly down-regulated STIM1 protein expression. Whole-cell electrophysiological recordings on these VSMCs (C) show that STIM1 knockdown abolished Na^+/Ca^{2^+} CRAC currents as compared with control (B). Representative Na^+ I-V relationships of CRAC currents in VSMCs are shown in D, and statistical analysis on current densities of Na^+ CRAC currents from each condition is shown in E.

Figure \$10. Both WT-STIM1 and eYFP-STIM1 rescued CRAC currents on STIM1 knockdown in VSMCs. Whole-cell patch-clamp recordings on VSMCs transfected with specific siRNA against STIM1 (siSTIM1) or siControl, a nontargeting control. STIM1 knockdown abrogated CRAC currents (B) as compared with control (A). Upon ectopic expression of plasmids encoding either WT-STIM1 (C) or eYFP-STIM1 (D) after STIM1 knockdown in VSMCs, both WT-STIM1 and eYFP-STIM1 rescued CRAC currents. Representative I-V curves taken from time course traces (A–D) where indicated by the color-coded "+" signs are shown in E. Statistical analyses on Ca²⁺ CRAC current densities for the four conditions in VSMCs (A–D) are shown in F. Please note that the scale for C and D is fivefold bigger than the scale for A and B.

Figure \$11. WT-STIM1 rescued AA-activated currents on STIM1 knockdown in HEK293 cells. Whole-cell patch-clamp electrophysiological recordings on HEK293 cells transfected with specific siRNA against STIM1 (siSTIM1; B) or siControl, a nontargeting control siRNA (A). STIM1 knockdown abrogated AA-activated currents (B) as compared with control (A). Upon ectopic expression of plasmids encoding either WT-STIM1 (C) or eYFP-STIM1 (D) after STIM1 knockdown in HEK293 cells, only WT-STIM1 rescued AA-activated currents. Representative I-V curves taken from time course traces (A–D) where indicated by the color-coded asterisks are shown in E. Statistical analyses on AA-activated current densities for the four conditions in HEK293 cells (A–D) are shown in Fig. 5 F in the main text.

Figure \$12. Both WT-STIM1 and eYFP-STIM1 rescued CRAC currents on STIM1 knockdown in HEK293 cells. Whole-cell patch-clamp recordings on HEK293 cells transfected with specific siRNA against STIM1 (siSTIM1) or siControl, a nontargeting control siRNA. STIM1 knockdown abrogated Na⁺/Ca²⁺ CRAC currents (B) as compared with control (A). Upon ectopic expression of plasmids encoding either WT-STIM1 (C) or eYFP-STIM1 (D) after STIM1 knockdown in HEK293 cells, both WT-STIM1 and eYFP-STIM1 rescued CRAC currents. Representative I-V curves taken from time course traces (A–D) where indicated by the color-coded asterisks are shown in E. Statistical analyses on Na⁺ CRAC current densities for the four conditions in HEK293 cells (A–D) are shown in F. Please note that the scale for C and D is 10-fold bigger than the scale for A and B.

Figure \$13. Calmodulin dialysis through the pipette and the addition of calmidazolium to the bath have no effect on AA-activated currents in HEK293 cells. Whole-cell patch-clamp electrophysiological recording on HEK293 cells. Dialyzing the cells with $10~\mu M$ calmodulin through patch pipette (B) or pretreatment of cells with $3~\mu M$ calmidazolium in the bath (C) has no effect on AA-activated currents as compared with control (A). Representative I-V curves are shown in D. Na $^+$ current densities measured under DVF bath solutions from three independent experiments are summarized in E.

Figure \$14. Combined calmodulin dialysis and eYFP-STIM1 expression in STIM1-depleted HEK293 cells failed to rescue AA-activated currents. Whole-cell patch-clamp electrophysiological recording on HEK293 cells transfected with specific siRNA against STIM1, or si-Control as a nontargeting control. STIM1 knockdown (B) completely abrogated AA-activated currents as compared with control (A). The combination of eYFP-STIM1 expression and 10 μM calmodulin dialysis through the patch pipette failed to rescue AA-activated currents in STIM1-depleted cells (C); the subsequent addition of ionomycin as a control showed that CRAC currents are rescued. Representative I-V curves are shown in D. Na⁺ current densities measured under DVF bath solutions from three independent experiments are summarized in E.

Table S1
List of siRNA and shRNA sequences used in this study

siRNA/shRNA	Sequence			
VSMCs (rat)				
siControl	UGGUUUACAUGUCGACUAA			
siOrai2	GCCACAACCGUGAGAUCGA			
siSTIM1	UAAGGGAAGACCUCAAUU			
HEK293 cells (human)				
siControl	UGGUUUACAUGUCGACUAAUU			
siOrai1	CGUGCACAAUCUCAACUCGUU			
siOrai2	GGGCAUGGAUUACCGGGACUU			
siOrai3	GGGUCAAGUUUGUGCCCAU			
siSTIM1	AAGGGAAGACCUCAAUUACCAUU			
VSMCs (rat)				
shControl	Open Biosystems sequence 1			
shOrail	GACCGACAGTTCCAGGAGCTCAACGAGCT			
shOrai3	CCTCCCTTAGTTTAGCTTCTAA			

Table S2 List of primers used for qPCR

List of primers used for all Cit							
Rat gene	Forward $(5'-3')$	Reverse (3'–5')	Size				
			bp				
rOrai1	ACGTCCACAACCTCAACTCC	ACTGTCGGTCCGTCTTATGG	362				
rOrai2	CACCTATTTGCCCTGCTCAT	AGCTTGTGCAGTTCCTCGAT	386				
rOrai3	CTGTCCACCAGTCACCACAC	CCACCAAGGATCGGTAGAAA	422				

Table S3
Statistical analysis of patch-clamp data from supplemental figures

Figure	Cell type	Experiment	Stimulus	I[Ca ²⁺] (pA/pF)	n	$I[Na^+]$ (pA/pF)	n	P-value
S1 C	VSMC	WT	None	0.008/0.012	4	ND	ND	
	VSMC	WT	AA	0.100/0.040	8	ND	ND	AA vs. Control; P = 4.14 E-07
S4 D	VSMC	shControl	BAPTA	ND	ND	0.391/0.042	4	
	VSMC	shOrai1	BAPTA	ND	ND	0.033/0.018	4	shOrai1 vs. shControl; P = 4.66 E-08
S4 H	HEK293	siControl	BAPTA	ND	ND	0.470/0.137	3	
	HEK293	siOrai1	BAPTA	ND	ND	0.131/0.105	4	siOrai1 vs. siControl; P = 5.86 E-04
S5 D	VSMC	siControl	BAPTA	ND	ND	0.411/0.072	3	
	VSMC	siOrai2	BAPTA	ND	ND	0.393/0.045	5	siOrai2 vs. siControl; P = 0.371
S5 H	HEK293 siContro	siControl	BAPTA	ND	ND	0.410/0.093	4	
	HEK293	siOrai2	BAPTA	ND	ND	0.396/0.068	5	siOrai2 vs. siControl; P = 0.552
S6 D	VSMC	shControl	BAPTA	ND	ND	0.398/0.064	3	
	VSMC	shOrai3	BAPTA	ND	ND	0.385/0.091	4	shOrai3 vs. shControl; P = 0.653
S6 H	HEK293	siControl	BAPTA	ND	ND	0.427/0.103	4	
	HEK293	siOrai3	BAPTA	ND	ND	0.446/0.121	4	siOrai3 vs. siControl; P = 0.591
S9 E	VSMC	siControl	BAPTA	ND	ND	0.392/0.084	4	
	VSMC	siSTIM1	BAPTA	ND	ND	0.031/0.024	4	siSTIM1 vs. siControl; P = 1.80 E-06
S10F	VSMC	siControl	BAPTA	0.097/0.037	4	ND	ND	
	VSMC	siSTIM1	BAPTA	0.017/0.015	4	ND	ND	siSTIM1 vs. siControl; P = 4.33 E-08
	VSMC	+WT-STIM1	BAPTA	1.153/0.436	4	ND	ND	+WT-STIM1 vs. siSTIM1; P = 6.25 E-06
	VSMC	+eYFP-STIM1	BAPTA	1.236/0.251	3	ND	ND	+eYFP-STIM1 vs. siSTIM1; P = 5.14 E-05
S12 F	HEK293	siControl	BAPTA	ND	ND	0.445/0.131	3	
	HEK293	siSTIM1	BAPTA	ND	ND	0.111/0.062	3	siSTIM1 vs. siControl; P = 0.00192
	HEK293	+WT-STIM1	BAPTA	ND	ND	7.467/6.304	3	+WT-STIM1 vs. siSTIM1; P = 0.0156
	HEK293	+eYFP-STIM1	BAPTA	ND	ND	8.592/5.701	4	+eYFP-STIM1 vs. siSTIM1; $P = 0.00415$
S13 E	HEK293	WT	AA	ND	ND	0.361/0.105	4	
	HEK293	WT	CaM + AA	ND	ND	0.349/0.084	3	CaM + AA vs. AA; P = 0.69439
	HEK293	WT	CMZ + AA	ND	ND	0.370/0.116	4	CMZ + AA vs. AA; P = 0.60203
S14 E	HEK293	siControl	AA	ND	ND	0.370/0.103	4	
	HEK293	siSTIM1	AA	ND	ND	0.064/0.063	3	siSTIM1 vs. siControl; P = 1.63 E-04
	HEK293	+eYFP-STIM1	CaM + AA	ND	ND	0.085/0.175	6	+eYFP-STIM1 vs. $siSTIM1$; $P = 0.63144$

Statistical analysis on patch-clamp experiments reported in the supplemental material, figure by figure, showing mean/range of Ca^{2+}/Na^{+} currents and corresponding n number and p-values for comparisons. WT, wild type; BAPTA, 1,2-bis (o-aminophenoxy) ethane-N, N, N-tetraacetic acid; AA, arachidonic acid; CMZ, calmadozolium; ND, not determined.