Shelley et al., http://www.jgp.org/cgi/content/full/jgp.201311072/DC1

Supplemental results

To examine the consequence of each sequence alteration required to generate the SCN variants BK_{0} and $\mathrm{BK}_{\text {SRKR }}$ from the parent construct, mbr5, we constructed a series of clones that differed by stepwise addition and deletion of the indicated sequences (Fig. S1 A). We found that the addition of the "MANG" N-terminal sequence found in the SCN clones (C2), removal of IYF at splice site 2 (C3), and switching the "VEDEC" C-terminal sequence to "VYR" (C4) had no significant effects on the G-V relationships or kinetics of activation or deactivation (Fig. S1, B-D). However, comparing mbr5 currents to BK_{0}, the addition of the Ca^{2+}-bowl insert at splice site 3 right-shifted the G-V curve at 0,1 , and 100 $\mu \mathrm{M} \mathrm{Ca}^{2+}$ (Fig. S2 A and Table S1). There was no effect of adding the Ca^{2+}-bowl exon at $10 \mu \mathrm{M} \mathrm{Ca}^{2+}$. The addition of the Ca^{2+}-bowl exon also influenced the kinetics of activation and deactivation. At 10 and $100 \mu \mathrm{M} \mathrm{Ca}^{2+}, \mathrm{BK}_{0}$ had slowed activation compared with mbr5 (Fig. S2 B). BK_{0} deactivation was faster at $0 \mathrm{Ca}^{2+}$, but slower at 100 $\mu \mathrm{M} \mathrm{Ca}^{2+}$, than mbr5, with no change seen at 1 and 10 $\mu \mathrm{M} \mathrm{Ca}^{2+}$ (Fig. S2 C). Thus, among the sequences tested here, the addition of the Ca^{2+}-bowl exon is the first alteration to produce significant changes in BK current properties. Notably, the changes in G-V and kinetics reported in this study for the addition of the Ca^{2+}-bowl exon are larger than reported previously (Ha et al. 2000. Eur. J. Biochem. 267:910-918). However, the back-
ground variants used in the respective studies were also different.

The addition of the SRKR exon at site $1\left(\mathrm{BK}_{\text {SRKR }}\right)$ produced a further right-shift of the G-V at 0,1 , and 100 $\mu \mathrm{M}$, but not $10 \mu \mathrm{M} \mathrm{Ca}^{2+}$ (Fig. S2 A and Table S1). To determine whether the addition of the Ca^{2+} bowl at site 3 or the SRKR exon at site 1 had a larger impact on BK current properties, the magnitudes of the $\mathrm{V}_{1 / 2}$ shifts were compared ($\Delta \mathrm{V}_{1 / 2}$ for $\mathrm{C} 4-\mathrm{BK}_{0}$ vs. $\mathrm{BK}_{0}-\mathrm{BK}_{\text {SRKR }}$). At 1 and $100 \mu \mathrm{M} \mathrm{Ca}^{2+}$, the $\Delta \mathrm{V}_{1 / 2}$ values produced by the addition of the Ca^{2+} bowl and SRKR exons were similar, being 29 and 33 mV at $1 \mu \mathrm{M} \mathrm{Ca}^{2+}$, and both 3 mV at 10 $\mu \mathrm{M} \mathrm{Ca}{ }^{2+}$ (Table S1). However, the addition of SRKR produced a larger $\Delta \mathrm{V}_{1 / 2}$ at $0 \mathrm{Ca}^{2+} \mu \mathrm{M}(49 \mathrm{mV}$ compared with 34 mV for adding Ca^{2+} bowl). Overall, the addition of SRKR had the largest impact on BK current properties of the sequences tested in this study and produced the most right-shifted G-V curves (see also Results in the main text).

A mbr5 MDAL... S1-S6 \quad RCK1	LIYF	RCK2	...VEDEC

C2	MANG...	S1-S6	RCK1	LIYF	RCK2	VEDEC
C3	MANG...	S1-S6	RCK1	L	RCK2	.VEDEC

C4 | MANG... | S1-S6 | RCK1 | L | RCK2 | \ldots RKEMVYR |
| :--- | :--- | :--- | :--- | :--- | :--- |

BK_{0}| MANG... | S1-S6 | RCK1 | L | RCK2 [AKP...TEL] |
| :--- | :--- | :--- | :--- | :--- |
| | ...RKEMVYR | | | |

Figure S1. Properties of BK currents from clones mbr5, C2, C3, and C4. (A) Schematic diagram of mbr5, BK_{0}, $\mathrm{BK}_{\text {SRKR }}$, and the intermediate clones used to examine the functional consequences of stepwise additions or deletions of particular inserts. (B) G-V relationship for constructs mbr5, C2, C3, and C4, at the indicated Ca^{2+} concentrations. The alternative N terminus, deletion of IYF, and the alternative C terminus had no effect on the G-V curves. $\mathrm{V}_{1 / 2}$ values are given in Table S1. (C and D) Plot of $\tau_{\text {act }}$ or $\tau_{\text {deact }}$ versus voltage for constructs at the indicated Ca^{2+}; as with the G-V curves, no differences in the time constants of activation or deactivation were seen for any of the constructs.

Figure S2. Properties of BK currents from mbr5, BK_{0}, and $\mathrm{BK}_{\text {SRKR. }}$. (A) G-V relationship for mbr5, BK_{0}, and $\mathrm{BK}_{\text {SRKR. }}$. The addition of the Ca^{2+}-bowl exon $\left(\mathrm{BK}_{0}\right)$ and $\operatorname{SRKR}\left(\mathrm{BK}_{\text {SRKR }}\right)$ right-shifts the G-V relationship at all Ca^{2+} except for $10 \mu \mathrm{M} \mathrm{Ca}{ }^{2+}$, where no shift is observed. The magnitude of the shift was similar between BK_{0} and mbr5, and between $\mathrm{BK}_{\text {SRKR }}$ and BK_{0} at 1 and $100 \mu \mathrm{M} \mathrm{Ca}{ }^{2+}$, but was larger for $\mathrm{BK}_{\text {SRKR }}$ at $0 \mathrm{Ca}^{2+}$. $V_{1 / 2}$ values are given in Table S1. (B and C) Plot of $\tau_{\text {act }}$ or $\tau_{\text {deact }}$ versus voltage for constructs at the indicated Ca^{2+}. $\mathrm{BK}_{\text {SRKR }}$ is slower to activate than mbr5 at all Ca^{2+} concentrations, whereas BK_{0} only activates slower than mbr5 at 10 and $100 \mu \mathrm{M} \mathrm{Ca}$. At $0 \mathrm{Ca}^{2+}$, mbr5 deactivates slower than BK_{0} and $\mathrm{BK}_{\text {SRKR }}$; however, as Ca^{2+} is increased, the rate of deactivation of mbr5 increases compared with BK_{0} and $\mathrm{BK}_{\text {SRKR }}$.

Figure S3. BK currents are far from maximally activated in response to APs. (A) The complete day voltage protocol used to activate channels, consisting of a maximally activating voltage jump to +160 mV , followed by a holding potential identical to the mean daytime neuronal resting membrane potential, and the day AP waveform. (B) Example BK_{0} current in response to A , clearly showing that the AP does not maximally activate the channel. (C) Overlay of normalized currents from BK_{0} (black) and $\mathrm{BK}_{\text {SRKR }}$ (red) channels showing the reduced AP current and slower activation of $\mathrm{BK}_{\text {SRKR }}$ currents compared with BK_{0} currents in response to the day AP command waveform.

Figure S4. Structural model for the alternate splice site 1 region of BK_{0} and $\mathrm{BK}_{\text {SRKR }}$ variants. The SRKR insert shifts S 642 from a β-strand region into an extended loop region in the BK channel. Comparison between the cytosolic domains of a human BK channel crystal structure that lacks the SRKR insert (Protein Data Bank accession no. 3NAF; Wu et al. 2010. Nature. 466:393-397) and a zebrafish structure that contains the SRKR insert (Protein Data Bank accession no. 3U6N; Yuan et al. 2012. Nature. 481:94-97) reveals that the SRKR insert enlarges the loop region between two β strands. Arrows denote residues within β strands. Atomic coordinates of residues marked in red were not determined.

Table S1
$V_{1 / 2}$ values for $B K$ variants

BK variant	$\mathrm{V}_{1 / 2}(\mathrm{mV})$			
	$0 \mu \mathrm{M} \mathrm{Ca}{ }^{2+}$	$1 \mu \mathrm{M}$	$10 \mu \mathrm{M}$	$100 \mu \mathrm{M}$
mbr5	173 ± 2	138 ± 5	58 ± 3	-31 ± 2
C2	174 ± 3	144 ± 3	58 ± 6	-34 ± 2
C3	167 ± 5	144 ± 5	54 ± 3	-30 ± 2
C4	166 ± 6	142 ± 7	55 ± 2	-27 ± 2
BK_{0}	200 ± 11	171 ± 4	58 ± 3	-11 ± 2
$\mathrm{BK}_{\text {SRKR }}$	249 ± 3	204 ± 4	61 ± 2	8 ± 2
$\mathrm{BK}_{0}+$ Alk P		166 ± 2	59 ± 4	-8 ± 3
$\mathrm{BK}_{\text {SRKR }}+$ Alk P		166 ± 6	62 ± 2	-7 ± 3
$\mathrm{BK}_{\text {SRKR }}$-S644A		206 ± 6	62 ± 3	4 ± 3
$\mathrm{BK}_{\text {SRKR }}$-S642A		172 ± 6	54 ± 4	-11 ± 3
BK_{0}-S642D		208 ± 3	59 ± 2	11 ± 6
$\mathrm{BK}_{\text {SRKR }}$-S642A/S644A		167 ± 4	62 ± 2	-15 ± 2
$\mathrm{BK}_{0}+\beta 4$			92 ± 5	-23 ± 3
$\mathrm{BK}_{\text {SRKR }}+\beta 4$			151 ± 12	15 ± 8

G-V relationships were constructed from voltage-clamp recordings as described in Materials and methods in the main text. $\mathrm{V}_{1 / 2}$ values at the indicated $\left[\mathrm{Ca}^{2+}\right]_{i}$ were determined from Boltzmann fits to G-V data obtained from inside-out patches using standard square voltage pulses to activate currents in symmetrical K^{+}conditions ($n \geq 8$ for each condition). Alk P, patches treated with alkaline phosphatase.

