Shelley et al., http://www.jgp.org/cgi/content/full/jgp.201311072/DC1 ## Supplemental results To examine the consequence of each sequence alteration required to generate the SCN variants BK0 and BK_{SRKR} from the parent construct, mbr5, we constructed a series of clones that differed by stepwise addition and deletion of the indicated sequences (Fig. S1 A). We found that the addition of the "MANG" N-terminal sequence found in the SCN clones (C2), removal of IYF at splice site 2 (C3), and switching the "VEDEC" C-terminal sequence to "VYR" (C4) had no significant effects on the G-V relationships or kinetics of activation or deactivation (Fig. S1, B-D). However, comparing mbr5 currents to BK₀, the addition of the Ca²⁺-bowl insert at splice site 3 right-shifted the G-V curve at 0, 1, and 100 μM Ca²⁺ (Fig. S2 A and Table S1). There was no effect of adding the Ca²⁺-bowl exon at 10 µM Ca²⁺. The addition of the Ca²⁺-bowl exon also influenced the kinetics of activation and deactivation. At 10 and 100 µM Ca²⁺, BK₀ had slowed activation compared with mbr5 (Fig. S2 B). BK₀ deactivation was faster at 0 Ca²⁺, but slower at 100 μM Ca²⁺, than mbr5, with no change seen at 1 and 10 μM Ca²⁺ (Fig. S2 C). Thus, among the sequences tested here, the addition of the Ca²⁺-bowl exon is the first alteration to produce significant changes in BK current properties. Notably, the changes in G-V and kinetics reported in this study for the addition of the Ca²⁺-bowl exon are larger than reported previously (Ha et al. 2000. Eur. J. Biochem. 267:910-918). However, the background variants used in the respective studies were also different. The addition of the SRKR exon at site 1 (BK_{SRKR}) produced a further right-shift of the G-V at 0, 1, and 100 μM, but not 10 μM Ca²⁺ (Fig. S2 A and Table S1). To determine whether the addition of the Ca²⁺ bowl at site 3 or the SRKR exon at site 1 had a larger impact on BK current properties, the magnitudes of the $V_{1/2}$ shifts were compared ($\Delta V_{1/2}$ for C4-BK₀ vs. BK₀-BK_{SRKR}). At 1 and 100 μ M Ca²⁺, the $\Delta V_{1/2}$ values produced by the addition of the Ca2+ bowl and SRKR exons were similar, being 29 and 33 mV at 1 µM Ca²⁺, and both 3 mV at 10 μM Ca²⁺ (Table S1). However, the addition of SRKR produced a larger $\Delta V_{1/2}$ at 0 Ca²⁺ μ M (49 mV compared with 34 mV for adding Ca²⁺ bowl). Overall, the addition of SRKR had the largest impact on BK current properties of the sequences tested in this study and produced the most right-shifted G-V curves (see also Results in the main text). Figure S1. Properties of BK currents from clones mbr5, C2, C3, and C4. (A) Schematic diagram of mbr5, BK₀, BK_{SRRR}, and the intermediate clones used to examine the functional consequences of stepwise additions or deletions of particular inserts. (B) G-V relationship for constructs mbr5, C2, C3, and C4, at the indicated Ca^{2+} concentrations. The alternative N terminus, deletion of IYF, and the alternative C terminus had no effect on the G-V curves. $V_{1/2}$ values are given in Table S1. (C and D) Plot of τ_{act} or τ_{deact} versus voltage for constructs at the indicated Ca^{2+} ; as with the G-V curves, no differences in the time constants of activation or deactivation were seen for any of the constructs. Figure 52. Properties of BK currents from mbr5, BK₀, and BK_{SRKR}. (A) G-V relationship for mbr5, BK₀, and BK_{SRKR}. The addition of the Ca²⁺-bowl exon (BK₀) and SRKR (BK_{SRKR}) right-shifts the G-V relationship at all Ca²⁺ except for 10 μ M Ca²⁺, where no shift is observed. The magnitude of the shift was similar between BK₀ and mbr5, and between BK_{SRKR} and BK₀ at 1 and 100 μ M Ca²⁺, but was larger for BK_{SRKR} at 0 Ca²⁺. V_{1/2} values are given in Table S1. (B and C) Plot of τ_{act} or τ_{deact} versus voltage for constructs at the indicated Ca²⁺. BK_{SRKR} is slower to activate than mbr5 at all Ca²⁺ concentrations, whereas BK₀ only activates slower than mbr5 at 10 and 100 μ M Ca²⁺. At 0 Ca²⁺, mbr5 deactivates slower than BK₀ and BK_{SRKR}; however, as Ca²⁺ is increased, the rate of deactivation of mbr5 increases compared with BK₀ and BK_{SRKR}. Figure S3. BK currents are far from maximally activated in response to APs. (A) The complete day voltage protocol used to activate channels, consisting of a maximally activating voltage jump to +160 mV, followed by a holding potential identical to the mean daytime neuronal resting membrane potential, and the day AP waveform. (B) Example BK₀ current in response to A, clearly showing that the AP does not maximally activate the channel. (C) Overlay of normalized currents from BK₀ (black) and BK_{SRKR} (red) channels showing the reduced AP current and slower activation of BK_{SRKR} currents compared with BK₀ currents in response to the day AP command waveform. Figure 54. Structural model for the alternate splice site 1 region of BK_0 and BK_{SRKR} variants. The SRKR insert shifts S642 from a β-strand region into an extended loop region in the BK channel. Comparison between the cytosolic domains of a human BK channel crystal structure that lacks the SRKR insert (Protein Data Bank accession no. 3NAF; Wu et al. 2010. *Nature.* 466:393–397) and a zebrafish structure that contains the SRKR insert (Protein Data Bank accession no. 3U6N; Yuan et al. 2012. *Nature.* 481:94–97) reveals that the SRKR insert enlarges the loop region between two β strands. Arrows denote residues within β strands. Atomic coordinates of residues marked in red were not determined. Table S1 $V_{1/2}$ values for BK variants | BK variant | $ m V_{1/2}~(mV)$ | | | | |---------------------------------|-----------------------|-------------|--------------|-------------| | | 0 μM Ca ²⁺ | 1 μΜ | 10 μΜ | 100 μΜ | | mbr5 | 173 ± 2 | 138 ± 5 | 58 ± 3 | -31 ± 2 | | C2 | 174 ± 3 | 144 ± 3 | 58 ± 6 | -34 ± 2 | | C3 | 167 ± 5 | 144 ± 5 | 54 ± 3 | -30 ± 2 | | C4 | 166 ± 6 | 142 ± 7 | 55 ± 2 | -27 ± 2 | | BK_0 | 200 ± 11 | 171 ± 4 | 58 ± 3 | -11 ± 2 | | BK_{SRKR} | 249 ± 3 | 204 ± 4 | 61 ± 2 | 8 ± 2 | | $BK_0 + Alk P$ | | 166 ± 2 | 59 ± 4 | -8 ± 3 | | BK _{SRKR} + Alk P | | 166 ± 6 | 62 ± 2 | -7 ± 3 | | BK _{SRKR} -S644A | | 206 ± 6 | 62 ± 3 | 4 ± 3 | | BK _{SRKR} -S642A | | 172 ± 6 | 54 ± 4 | -11 ± 3 | | BK ₀ -S642D | | 208 ± 3 | 59 ± 2 | 11 ± 6 | | BK _{SRKR} -S642A/S644A | | 167 ± 4 | 62 ± 2 | -15 ± 2 | | $BK_0 + \beta 4$ | | | 92 ± 5 | -23 ± 3 | | $BK_{SRKR} + \beta 4$ | | | 151 ± 12 | 15 ± 8 | G-V relationships were constructed from voltage-clamp recordings as described in Materials and methods in the main text. $V_{1/2}$ values at the indicated $[Ca^{2+}]_i$ were determined from Boltzmann fits to G-V data obtained from inside-out patches using standard square voltage pulses to activate currents in symmetrical K^+ conditions ($n \ge 8$ for each condition). Alk P, patches treated with alkaline phosphatase.