Effect of Cs^{+}on the unliganded gating equilibrium constant, E_{0}

Although extracellular Na^{+}and K^{+}did not have any effect on the unliganded gating equilibrium constant, E_{0}, high concentrations of extracellular Cs^{+}, however, did increase E_{0} and the cluster open probability (Fig. S4 A and Table S5). To quantify the effect of Cs^{+}, we plotted the cluster open probability $\left(P_{o}\right)$ versus the $\left[\mathrm{Cs}^{+}\right]$and fitted it by the Hill equation:

$$
P_{o}=\frac{\left[C s^{+}\right]^{n}}{\left(E C_{50}+\left[C s^{+}\right]^{n}\right)}
$$

At +70 mV , the effect of Cs^{+}was half-maximal at ~ 9.8 mM , with a Hill coefficient of 0.98 (Fig. S4 A, right). The unliganded gating equilibrium constant was approximately six times greater in 100 mM of extracellular Cs^{+}compared with Na^{+}or K^{+}. The increase in P_{o} at $100 \mathrm{mM} \mathrm{Cs}^{+}$was almost exclusively caused by a decrease in the channel-closing rate constant $\left(\Phi^{\text {Cst }}=0.03\right.$; not depicted).

Previous studies have shown that mutations of the transmitter binding site mainly influence the opening rate constant (have characteristic Φ values near 1), whereas most of those in the transmembrane domain mainly influence the closing rate constant (have Φ values closer to 0; Grosman and Auerbach, 2000; Purohit et al., 2007). Given the low Φ value and the Hill coefficient of ~ 1.0, we hypothesized that the site of action of Cs^{+}was in the pore rather than at the transmitter binding sites. To test this idea, we compared the unliganded gating rate constants at different voltages with and without $3 \mathrm{mM} \mathrm{Cs}{ }^{+}$ added to the pipette solution (PBS). Fig. S4 B shows that this low concentration of extracellular Cs^{+}prolonged the open times (relative to the Na^{+}condition) when the membrane potential was -100 mV (inward currents) but had no effect at +70 mV (outward currents). This result is consistent with the site of action of Cs^{+}being within the electric field of the membrane, i.e., in the pore rather than at the transmitter binding sites.

REFERENCES

Cadugan, D.J., and A. Auerbach. 2010. Linking the acetylcholine receptor-channel agonist-binding sites with the gate. Biophys. J. 99:798-807. http://dx.doi.org/10.1016/j.bpj.2010.05.008
Grosman, C., and A. Auerbach. 2000. Kinetic, mechanistic, and structural aspects of unliganded gating of acetylcholine receptor channels: A single-channel study of second transmembrane segment 12' mutants. J. Gen. Physiol. 115:621-635. http://dx.doi. org/10.1085/jgp.115.5.621
Hibbs, R.E., and E. Gouaux. 2011. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 474:5460. http://dx.doi.org/10.1038/nature10139

Jha, A., P. Purohit, and A. Auerbach. 2009. Energy and structure of the M2 helix in acetylcholine receptor-channel gating. Biophys. J. 96:4075-4084. http://dx.doi.org/10.1016/j.bpj.2009.02.030
Jha, A., S. Gupta, S.N. Zucker, and A. Auerbach. 2012. The energetic consequences of loop 9 gating motions in acetylcholine receptor-channels. J. Physiol. 590:119-129.
Mitra, A., T.D. Bailey, and A.L. Auerbach. 2004. Structural dynamics of the M4 transmembrane segment during acetylcholine receptor gating. Structure. 12:1909-1918. http://dx.doi.org/10.1016/j. str.2004.08.004
Purohit, P., and A. Auerbach. 2009. Unliganded gating of acetylcholine receptor channels. Proc. Natl. Acad. Sci. USA. 106:115-120. http:/ /dx.doi.org/10.1073/pnas. 0809272106
Purohit, P., and A. Auerbach. 2010. Energetics of gating at the apoacetylcholine receptor transmitter binding site. J. Gen. Physiol. 135:321-331. http:/ /dx.doi.org/10.1085/jgp. 200910384
Purohit, P., A. Mitra, and A. Auerbach. 2007. A stepwise mechanism for acetylcholine receptor channel gating. Nature. 446:930-933. http:/ /dx.doi.org/10.1038/nature05721

Figure S1. Locations of the mutated amino acids. (A) The Torpedo AChR (Protein Data Bank accession no. 2bg9). There are five subunits $\left(\alpha_{2} \beta \delta \varepsilon\right.$ in adult type). Horizontal lines mark approximately the membrane. The extracellular domain is mostly β sheet and connecting loops and contains the two transmitter binding sites, located at the interfaces between the α and δ or ε subunits (asterisk marks the $\alpha-\varepsilon$ site). The transmembrane domain of each subunit has four helices. M2 lines the pore, and M4 faces the membrane. (B) Mutations by subunit. Only the extracellular and transmembrane domains are shown. Blue, the first mutation set; red, the second mutation set (see Fig. 2). The binding site residue α W149 is colored tan. The full list of mutations is given in Table S1. The location of the mutations is only approximate (Hibbs and Gouaux, 2011).

Figure S3. Voltage dependence of the unliganded gating equilibrium constant (E_{0}). (A) Interval duration histograms and example currents at different membrane potentials. The construct is $\alpha \mathrm{A} 96 \mathrm{Y}+\beta \mathrm{T} 456 \mathrm{I}+\delta \mathrm{I} 43 \mathrm{Q}+\varepsilon \mathrm{E} 181 \mathrm{~T}+\varepsilon \mathrm{L} 269 \mathrm{~F}$. There was no ligand in the bath or the pipette. Note the decrease in closed-channel lifetime and concurrent increase in the open-channel lifetime with hyperpolarization. (B) E_{0} as a function of the membrane voltage $\left(\mathrm{V}_{\mathrm{m}}\right)$. There was an e-fold decrease in the gating equilibrium constant with a depolarization of $\sim 57 \mathrm{mV}$ for $\alpha \mathrm{A} 96 \mathrm{~F}$ (upward triangle), V (downward triangle), and N (open circle) (see Table S4).

Figure S4. Extracellular Cs^{+}and cluster open probability $\left(P_{o}\right)$. (A) Adding Cs^{+}to the pipette solution ($0.1 \mathrm{mM} \mathrm{CaCl} \mathrm{m}_{2}$) increases P_{0}. (Left) Example clusters of single-channel currents at +70 mV . (Right) P_{o} versus $\left[\mathrm{Cs}^{+}\right]$. The half-maximal effect is at $\sim 9.8 \mathrm{mM}$, and the Hill coefficient is 0.98 (fitted line). (B) Effect of adding $3 \mathrm{mM} \mathrm{Cs}{ }^{+}$to the pipette solution (PBS) is voltage dependent. There is no effect of Cs^{+}at +70 mV (outward currents, bottom panel), whereas at -100 mV (inward currents, top panel), $3 \mathrm{mM} \mathrm{Cs}{ }^{+}$decreases the closing rate constant ($\mathrm{b}_{0}{ }^{\mathrm{PBS}}=1,108 \mathrm{~s}^{-1}$ and $\mathrm{b}_{0}{ }^{\text {PBS }+3 \mathrm{Cs}+}=787 \mathrm{~s}^{-1}$).

Table S1
List of set 2 mutants and their effect on the gating equilibrium constant

Mutant	Subunit	Secondary structure	Fold increase in gating equilibrium constant	Agonist; reference
A96L	α	Loop A	49.6	Cho; Cadugan and Auerbach, 2010
A96C	α	Loop A	118	Cho; Cadugan and Auerbach, 2010
A96V	α	Loop A	197	Cho; Cadugan and Auerbach, 2010
A96E	α	Loop A	420	Cho; Cadugan and Auerbach, 2010
A96F	α	Loop A	497	Cho; Cadugan and Auerbach, 2010
A96N	α	Loop A	4,071	Cho; Cadugan and Auerbach, 2010
A96W	α	Loop A	11,800	None; Cadugan and Auerbach, 2010
A96Y	α	Loop A	18,800	Cho; Cadugan and Auerbach, 2010
A96H	α	Loop A	117,000	None; Cadugan and Auerbach, 2010
T456I	β	M4	2.1	Cho; Mitra et al., 2004
T456F	β	M4	5.0	Cho; Mitra et al., 2004
I43Q	δ	$\beta 1$ strand	5	Cho; unpublished data
E181T	ε	Loop 9	2.2	Cho; Jha et al., 2012
L269F	ε	M2	179	Cho; Jha et al., 2009
V269A	δ	M2	250	Cho; Purohit and Auerbach, 2009
W149R	α	Loop B	17.1	None; Purohit and Auerbach, 2010

The fold increases in the gating equilibrium constant are with choline (Cho) except $\alpha \mathrm{A} 96 \mathrm{H} / \mathrm{W}$ (none) from experimental gating equilibrium constant measurements (e.g., $\left.\left[\left(\mathrm{E}_{2}\right)^{\text {mut }} /\left(\mathrm{E}_{2}\right)^{\text {wt }}\right]\right)$. The locations of the mutants are shown in Fig. S1. E_{2} fold change for $\alpha \mathrm{A} 96 \mathrm{Y}$ was measured by adding mutations that reduced $\mathrm{E}_{0}(\alpha$ V261D, 1,175-fold; α V261F, 65 -fold). For the mutations used in set 1 , see Purohit and Auerbach (2009).

Table S2
Effects of mutant combinations on E_{0}

Sl no.	Construct	Observed $f_{0}\left(\mathrm{~s}^{-1}\right)$	Observed $b_{0}\left(\mathrm{~s}^{-1}\right)$	$\mathrm{E}_{2}{ }^{\text {muts }} / \mathrm{E}_{2}{ }^{\text {wt }}$	Observed $\mathrm{E}_{0}{ }^{\text {mut }}$	n
1	α A96N β T456I	47.5 (2.9)	7,918 (830)	8.6E03	0.0063 (0.001)	4
2	α A96L β T456I ETLF	337 (57)	10,473 (595)	3.4 E 04	0.033 (0.006)	5
3	α A96Y β T456I	183 (52)	5,633 (641)	3.7 E 04	0.0324 (0.004)	5
4	α A96N α W149S	381 (15)	7,277 (1,069)	5.9E04	0.054 (0.005)	5
5	α W149R β T456I 8I43Q ETLF	57(6.3)	1,136 (61)	7.31 E 04	0.0504 (0.006)	3
6	α A96C β T456I ETLF	293 (6.3)	4,087 (130)	9.61 E 4	0.072 (0.005)	2
7	$\alpha \mathrm{A} 96 \mathrm{Y}$ 8I43Q	877 (175)	11,307 (764)	1.03 E 05	0.0826 (0.009)	5
8	$\alpha \mathrm{A} 96 \mathrm{H}$	181 (46)	5,463 (476)	1.17 E 05	0.033 (0.007)	6
9	α A96V β T456I ETLF	479 (10)	6,729 (760)	1.30 E 05	0.074 (0.009)	5
10	α A96L β T456I 8 I43Q ETLF	1,445 (195)	13,723 (628)	1.78 E 05	0.11 (0.019)	4
11	α A96H β T456I	330 (25)	2,392 (201)	2.3E05	0.14 (0.014)	3
12	α A96E β T456I EWLF	1,060 (32)	2,674 (437)	6.3 E 05	0.42 (0.087)	3
13	α A96F β T456I EWLF	2,466 (238)	3,671 (185)	7.5 E 05	0.675 (0.068)	4
14	α A96F δ I43Q ETLF	2,218 (639)	2,479 (397)	8.8E05	0.95 (0.12)	3
15	α A96F β T456I 8I43Q ETLF	1,732 (108)	1,281 (77)	1.76 E 06	1.37 (0.14)	4
16	α A96N β T456I ETLF	2,562 (362)	1,635 (75)	2.8E06	1.56 (0.167)	4
17	α A96Y $\delta \mathrm{V} 269 \mathrm{~A}$	3,849 (467)	1,108 (79)	4.7E06	3.46 (0.24)	7
18	α A96N β T456I EWLF	3,948 (185)	803 (60)	6.2 E 06	4.94 (0.14)	3
19	α A96Y ETLF	5,569 (422)	1,913 (75)	6.9 E 06	2.904 (0.1)	3
20	α A96W β T456I ETLF	4,388 (618)	368 (70)	8.5E06	12.6 (1.7)	7
21	α A96Y β T456I ETLF	9,050 (423)	911 (127)	1.34 E 07	10.56 (1.2)	6
22	α A96N β T456I 8I43Q ETLF	6,305 (419)	525 (35)	1.52 E 07	13.6 (2.3)	2
23	α A96W β T456I EWLF	4,556 (450)	265 (22)	1.79 E 07	17.45 (2.14)	3
24	α A96W β T456I δ I43Q ETLF	2,463 (406)	69 (7.8)	4.2 E 07	36.3 (4.6)	4
25	α A96Y β T456I 8 I43Q ETLF	11,400 (358)	583 (63)	6.67 E 07	19.9 (3.5)	5
26	α A96Y α W149F β T456F	369 (56)	2,769 (472)	-	0.15	5
27	$\alpha \mathrm{A} 96 \mathrm{H} \alpha \mathrm{W} 149 \mathrm{M} \beta$ T456F	232 (13)	3,223 (315)	-	0.07	2

$\mathrm{ETLF}=\varepsilon \mathrm{E} 181 \mathrm{~T}+\varepsilon \mathrm{L} 269 \mathrm{~F}$ and $\mathrm{EWLF}=\varepsilon \mathrm{E} 181 \mathrm{~W}+\varepsilon \mathrm{L} 269 \mathrm{~F} . \mathrm{E}_{2}{ }^{\text {muts }} / \mathrm{E}_{2}{ }^{\mathrm{wt}}$ is the product of the fold increases in E_{2} for individual mutations in the construct. f_{0} and b_{0} are the experimentally observed unliganded opening and closing rate constants, in $\mathrm{s}^{-1} . n$ is number of patches, and the numbers in parentheses are \pm SEM.

Table S3
Voltage dependence of the unliganded $\left(E_{0}\right)$ or diliganded $\left(E_{2}{ }^{*}\right)$ gating rate and equilibrium constant

Table S3 (Continued)

Construct	Ligand	V_{m}	Observed $f_{0}\left(\mathrm{~s}^{-1}\right) \text { or } f_{2} *\left(\mathrm{~s}^{-1}\right)$	Observed $b_{0}\left(\mathrm{~s}^{-1}\right) \text { or } \mathrm{b}_{2}\left(\mathrm{~s}^{-1}\right)$	Observed E_{0} or $\mathrm{E}_{2} *$	n
$\overline{\varepsilon S 450 A}$	Choline	-120	180	274.73	0.66	1
		-100	161	388.44	0.41	1
		-80	180	667.88	0.27	1
		-60	157	709.61	0.22	1
		-40	85	788.32	0.11	1
		-20	85	1,205.31	0.07	1
		20	121	4,869.43	0.02	1
		40	111	2,827.34	0.04	1
		60	112	2,732.52	0.04	1
		80	115	3,142.45	0.04	1
		100	98	4,620.24	0.02	1
		120	133	3,967.00	0.03	1
DYS + δ L265T	None	-100	168	91	1.85	1
		-90	110	119	0.92	1
		-80	126	103	1.22	1
		-70	113	124	0.91	1
		-60	103	114	0.90	1
		-50	99	150	0.66	1
		-40	100	171	0.58	1
		-35	100	172	0.58	1
		-30	92	152	0.61	1
		-25	93	178	0.52	1
		25	42	171	0.25	1
		30	64	269	0.24	1
		40	67	307	0.22	1
		50	77	405	0.19	1
		60	70	444	0.16	1
		70	75	482	0.16	1
		80	70	580	0.12	1
		90	72	667	0.11	1
		100	71	739	0.10	1
$\alpha \mathrm{DY}+\beta \delta+\varepsilon \mathrm{L} 269 \mathrm{~F}+\varepsilon$ P245L	None	-100	672	1,403	0.48	1
		-80	687	1,824	0.38	1
		-60	584	2,216	0.26	1
		-40	395	2,196	0.18	1
		-25	312	2,334	0.13	1
		25	242	4,691	0.05	1
		40	197	5,418	0.04	1
		60	195	7,745	0.03	1
		80	237	9,191	0.03	1
		100	217	11,162	0.02	1

f_{0} and b_{0} are the unliganded opening and closing rate constants. $f_{2}{ }^{*}$ and b_{2} are the apparent diliganded opening and closing rate constants. E_{0} and $\mathrm{E}_{2} *$ are the unliganded and apparent diliganded gating equilibrium constant. n is the number of patches, and the values in the parentheses are \pm SEM.

Table S4
ΔV_{m} required for e-fold change in unliganded gating equilibrium
constant (E_{0})

Construct	$\Delta \mathrm{V}_{\mathrm{m}}$ for e fold change
α A96F β T456I 8 I43Q ETLF	55.4 ± 3.1
$\alpha \mathrm{A} 96 \mathrm{~V}$ ßT456I 8 I43Q ETLF	52.6 ± 5.6
α A96N β T456I 8I43Q ETLF	61.6 ± 0.8
α A96Y β T456I 8I43Q ETLF	57.8 ± 2.5

ETLF $=\varepsilon$ E181T $+\varepsilon$ L269F. The unliganded gating equilibrium constant (E_{0}) decreased by e-fold with $\sim 57-\mathrm{mV}$ change in membrane voltage $\left(\Delta \mathrm{V}_{\mathrm{m}}\right)$.

Table S5
Effect of monovalent cations on the unliganded gating equilibrium constant (E_{0}) construct: α A96Y 8 V269A

$\left[\mathrm{Cs}^{+}\right]$	Observed	Observed $f_{0}\left(\mathrm{~s}^{-1}\right)$	Observed $\mathrm{E}_{0}(+70 \mathrm{mV})$
$m M$			
0	$1,892(148)$	$5,710(494)$	$0.34(0.029)$
3	$2,407(124)$	$4,412(235)$	$0.54(0.022)$
10	$2,534(23)$	$2,123(330)$	$1.25(0.11)$
20	$3,020(122)$	$2,064(78)$	$1.46(0.08)$
50	$3,456(74)$	$1,852(99.6)$	$1.89(0.13)$
100	$3,673(145)$	$1,630(122)$	$2.28(0.23)$
150	$4,074(167)$	$1,382(8.1)$	$2.94(0.13)$
$\mathrm{H}_{2} \mathrm{O}$	$1,910(78)$	$5,473(216)$	$0.35(0.026)$
$\mathrm{Na}^{+}(137)$	$1,637(101)$	$5,688(97)$	$0.29(0.018)$

f_{0} and b_{0} are the experimentally measured opening and closing rate constants, and E_{0} is the unliganded gating equilibrium constant. All the recordings were done at +70 mV . The experimental f_{0}, b_{0}, and E_{0} for unliganded gating with $\mathrm{H}_{2} \mathrm{O}$ and $137 \mathrm{mM} \mathrm{Na}^{+}$in the pipette are shown for comparison. n is the number of patches, and the values in the parentheses are \pm SEM.

