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Figure S1. 1 and 4 share common gating ef-
e — e ffcts. (A(i BO-th [?l anddBéllslowggdng.kinetics.

. B veraged activation and deactivation time con-
100 0 100 200 200 0 200 stants at 7 pM Ca®. o, n=10-13; ap1, n = 13-27;
af34, n = 12-26. (B) Both B1 and B4 increase
steady-state opening at high Ca*" but reduce
opening in lower Ca*. AV, represents differ-
ences between af3 channels and « alone chan-
nels. o, n = 8-44; aBl, n="7-39; a4, n = 10-26.
(C) 0 Ca* logP,-V relations reveal similar dual
gating effects of B1 and B4: reducing intrinsic
gating (downwards arrow) and stabilization of
voltage sensor activation (leftwards arrow). These
data have been reported in our previous publica-
tions (Wang and Brenner, 2006; Wang et al,,
2006). o, n=3-12; aBl, n=4-22; a4, n=4-11.
Error bars represent SEM.
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Figure S2. Alanine substitutions of four B1 residues alter G-V relations. (A-E) Averaged G-V relations of aflyr, aflsiosm, aBlyiosa,
aBligea, and aflyzys atindicated o/B1 molar ratios. For a1y and a3 1y;05 channels, G-Vs largely overlap at both 1:6 and 1:12 /1 mo-
lar ratios, suggesting that 31 expression is saturated. For af1sio4a, @B 11106a, and aflyss channels, reducing /1 molar ratio from 1:6 to
1:12 caused negative G-V shifts; however, further reduction to 1:24 did not produce further negative G-V shifts. For the 1:12 o/ molar
ratio, aBl\y’r, n= 14, OL|3151(]4A, n= 9, Olslym;,A, n= 15, OLBl[]()(,A, n= 9, O(BIYMA, n=14. For the 1:24 OL/Blmolar ratio, 0‘[315104A, n= 8, O(Bl]m(,A,
n=>5; aflyzua, n=10. Error bars represent SEM.
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Figure S3.  Segment A and B residues contribute to stabilization of open-channel voltage sensor activation. (A-F) Averaged P,-V rela-

tions (circles) and best fits to the Horrigan-Aldrich model (black curves). The number of patches is the same as in Fig. 7. Error bars
represent SEM.
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Figure S4. Effects of I106A, Y74A, and Y105AY74A on intrinsic
gating and voltage sensor activation. Numbers indicate effects of
the mutation on free energies associated with C-C transitions
(right to left), O-O transitions (left to right), and C-O transitions
(downward).
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