Gruslova et al., http://www.jgp.org/cgi/content/full/jgp.201110698/DC1

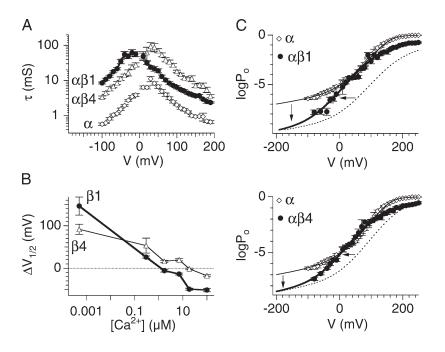



Figure \$1. β1 and β4 share common gating effects. (A) Both β 1 and β 4 slow gating kinetics. Averaged activation and deactivation time constants at 7 μ M Ca²⁺. α , n = 10-13; $\alpha\beta1$, n = 13-27; $\alpha\beta4$, n = 12-26. (B) Both $\beta1$ and $\beta4$ increase steady-state opening at high Ca2+ but reduce opening in lower Ca2+. $\Delta V_{1/2}$ represents differences between $\alpha\beta$ channels and α alone channels. α , n = 8-44; $\alpha\beta1$, n = 7-39; $\alpha\beta4$, n = 10-26. (C) 0 Ca2+ logPo-V relations reveal similar dual gating effects of \$1 and \$4: reducing intrinsic gating (downwards arrow) and stabilization of voltage sensor activation (leftwards arrow). These data have been reported in our previous publications (Wang and Brenner, 2006; Wang et al., 2006). α , n = 3-12; $\alpha\beta 1$, n = 4-22; $\alpha\beta 4$, n = 4-11. Error bars represent SEM.

Figure S2. Alanine substitutions of four β1 residues alter G-V relations. (A–E) Averaged G-V relations of α β1_{WT}, α β1_{S104A}, α β1_{S105A}, α β1_{H106A}, and α β1_{Y74A} at indicated α /β1 molar ratios. For α β1_{WT} and α β1_{H106A}, and α β1_{Y74A} channels, G-Vs largely overlap at both 1:6 and 1:12 α /β1 molar ratios, suggesting that β1 expression is saturated. For α β1_{S104A}, α β1_{H106A}, and α β1_{Y74A} channels, reducing α /β1 molar ratio from 1:6 to 1:12 caused negative G-V shifts; however, further reduction to 1:24 did not produce further negative G-V shifts. For the 1:12 α /β molar ratio, α β1_{WT}, n = 14; α β1_{S104A}, n = 9; α β1_{H106A}, n = 9; α β1_{H106A}, n = 9; α β1_{H106A}, n = 14. For the 1:24 α /β1molar ratio, α β1_{S104A}, n = 8; α β1_{H106A}, n = 5; α β1_{Y74A}, n = 10. Error bars represent SEM.

Figure S3. Segment A and B residues contribute to stabilization of open-channel voltage sensor activation. (A-F) Averaged PoV relations (circles) and best fits to the Horrigan-Aldrich model (black curves). The number of patches is the same as in Fig. 7. Error bars represent SEM.

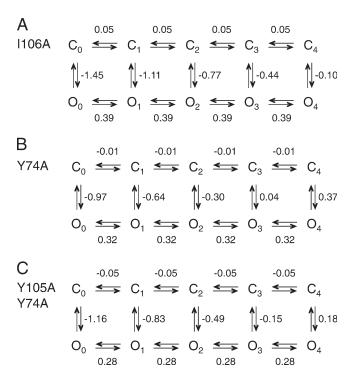


Figure S4. Effects of I106A, Y74A, and Y105AY74A on intrinsic gating and voltage sensor activation. Numbers indicate effects of the mutation on free energies associated with C-C transitions (right to left), O-O transitions (left to right), and C-O transitions (downward).

REFERENCES

Wang, B., and R. Brenner. 2006. An S6 mutation in BK channels reveals \$1 subunit effects on intrinsic and voltage-dependent gating. J. Gen. Physiol. 128:731-744. http://dx.doi.org/10.1085/ jgp.200609596

Wang, B., B.S. Rothberg, and R. Brenner. 2006. Mechanism of β4 subunit modulation of BK channels. J. Gen. Physiol. 127:449-465. http://dx.doi.org/10.1085/jgp.200509436