Muroi et al., http://www.jgp.org/cgi/content/full/jgp.200810103/DC1

Figure S1. The effect of lidocaine on rhodamine fluorescence in the lipid membrane. (A) Membrane localization of this fluorophore was first confirmed by measuring a fast voltage-dependent fluorescence response in labeled un-injected oocytes. This fluorescence response is likely to be an electrochromic signal that results from an interaction of the fluorophore dipole moment with the electric field. Membrane potential-dependent fluorescence traces from oocytes incubated in octadecyl rhodamine B were elicited by a pulse to +50 mV from -120 mV . An average of 10 individual traces is shown. (B) Fluorescence intensities from labeled un-injected oocytes were measured in different concentrations of lidocaine. A Stern-Volmer plot of octadecyl rhodamine quenching by lidocaine is shown. The data were fitted to the following equation:

$$
\frac{F_{0}}{F}=1+K_{D}[Q],
$$

where F_{0} is the maximum fluorescence intensity without lidocaine, F is fluorescence intensity in different concentrations of lidocaine, $[Q]$ is lidocaine concentration, and K_{D} is the Stern-Volmer quenching constant. Thus, lidocaine is unlikely to quench rhodamine fluorescence either in an aqueous solution (up to 100 mM lidocaine; not depicted) or in a membrane environment. The time-dependent changes in octadecyl rhodamine B fluorescence intensity was corrected by recording in the absence of lidocaine. The data represent the mean \pm propagation of errors derived from standard deviations for each data set.

Figure S2. A state diagram depicting a simple model system. This hypothetical channel consists of two subunits, where each subunit undergoes two transitions: R to A and A to O . These subunits were coupled via the last transition. If one of the subunits was in state A , the forward transition to O was favored by a factor n when the second subunit was also in the state O . The gating scheme is similar to the one used to describe the Shaker gating (Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1994. J. Gen. Physiol. 103:321-362).

Figure S3. Simulated fluorescence-voltage curves of the simple model system (Fig. S2) in response to voltage sensor perturbations. The left panel shows the fluorescence-voltage curves when the second A to O transition is made favorable (K_{3} and $\mathrm{K}_{4}=10$), and the right panel shows the fluorescence-voltage curve when the A to O transition is not favored (K_{3} and $\mathrm{K}_{4}=0.1$). The parameters to generate the fluorescence-voltage plots are shown in Table S1. Solid lines depict the fluorescence-voltage curves when both the domains were coupled to each other $(n=10)$ before perturbation. Dashed lines represent the fluorescence-voltage curves when the input V_{m} corresponding to the $\mathrm{R} \rightarrow \mathrm{A}$ transition for subunit Y was left-shifted by -150 mV .

TABLE S 1
Parameters to Simulate the Fluorescence-Voltage Relationships in the Model System in Response to Voltage Sensor Perturbations

Coupling term, n		Subunit X	Subunit Y
Input V_{m} values		0	$\begin{gathered} -50 \\ \downarrow \\ -200 \\ \hline \end{gathered}$
Output V_{m} values	Large K_{3} and K_{4}	$\begin{gathered} \hline-101.80 \\ \downarrow \\ -114.49 \\ \hline \end{gathered}$	$\begin{gathered} -123.49 \\ \downarrow \\ -260.48 \end{gathered}$
	Small K_{3} and K_{4}	$\begin{gathered} -3.92 \\ \downarrow \\ -4.23 \end{gathered}$	$\begin{gathered} -52.72 \\ \downarrow \\ -202.41 \end{gathered}$

The input V_{m} values define K_{1} and K_{2} as described in Materials and methods. The output V_{m} values were obtained by fitting the simulated fluorescencevoltage curves of subunits X and Y with a Boltzmann function. When input V_{m} value of subunit Y is changed from -50 to -200 mV in this model system, the output V_{m} values of both subunits shift depending on their K_{3} and K_{4}.

