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Applying the Schwarz Criterion to the Distribution of Open Times to Distinguish Between One or More Open States, in the Case of 
Only One Closed State

Consider a gating scheme with 1 closed state and any number of open states. Let the data consist of M openings
(without restricting generality, assume that the series starts and ends with closed events). The events list consists of
the series of dwell times tc,1, to,1, tc, 2, to, 2,...to,M, tc,M�1. The likelihood of such a series of dwell times (Fredkin, D.R., M.
Montal, and J.A. Rice. 1985. Identification of aggregated Markovian models: application to the nicotinic acetylcho-
line receptor. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer. L.M. Le Cam
and R.A. Ohlsen, editors. Wadsworth Publishing Co., Belmont, CA. 269–289) is:

(S1)

where Qcc, Qoo, Qco, and Qoc are submatrices of the state matrix Q, and and (see below) are row vec-
tors of steady state occupancy probabilities, and 1o and 1c summation vectors, for the sets of closed and open states,
respectively.

Because there is only one closed state, the following identities apply:

(a)

This is because is simply a scalar number, and so:

(b)

Substituting from Eqs. a and b into Eq. S1, the likelihood of the whole time series becomes

(S2)

The log of the likelihood, LL � ln(L) then becomes:

(S3)
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where tc and to represent the separated vectors of closed and open dwell times, respectively. Hence, the log likeli-
hood of the whole time series separates into the sum of the log likelihoods of the closed and open times. Moreover,
the latter two log likelihoods depend on disjoint subsets of parameters: let rco denote the sum of all rates leading
from the unique closed state to all adjacent open states. LLo does not depend on the size of rco, while LLc depends
solely on rco through:

If � denotes the gating scheme with its rate constants, then optimization of LL with respect to � can be achieved by
separately optimizing LLc with respect to rco, and LLo with respect to Moreover, LLc at the peak is the
same for any two schemes with one closed state:  from which:

(S4)

Thus, �LLo, the log of the likelihood ratio for M open times, corresponds to �LL for a time series of 2M(�1)
events for any pair of schemes that both have one closed state.

Reconstruction of the Time Sequence of Unlocking Events

Task. N channels, No locked initially, reconstruct time sequence of unlocking events.
Strategy. The kth channel is considered to become unlocked at the start of a gap to lower conductance levels of

duration exceeding a defined cutoff �k.
Problem. How to choose a cutoff �k separately for each conductance level, such that the probabilities of assigning

a particular unlocking event too early or too late are equal?
Single-channel model. Consider a patch with several (5–20) channels, each of which can transit from a closed state

(C) to either a relatively short-lived open state (O), or a very long-lived conducting state (L, for “locked open”).
State L also communicates with a brief blocked (B, nonconducting) state. At steady state, the rates are suddenly
changed such that rate rCL � 0, and rCO becomes extremely small. The system can now be described by the scheme:

where, initially, No channels are in L, and N–No in C. First, obtain estimates of rLB and rBL from sections of record
with just one channel locked (rLB � 3 s�1, rBL � 13 s�1). Second, obtain estimate of apparent reopening rate rCO af-
ter all channels are unlocked (rCO � 0.005 s�1 typically).

Macroscopic model. Consider time interval after (k � 1)th channel has unlocked, but kth channel has not un-
locked yet. During this time interval, describe macroscopic system by simplified two-dimensional macroscopic state
vector (nS, nA), corresponding to the number of shut (closed or blocked) and active (locked or open) channels, re-
spectively (nS � nA � N). Hence, the number of macroscopic states is N � 1. Index macroscopic states in increasing
order of nA, build state-matrix Q(k). Neglecting the effect of channel reopening within flickery gaps (rCO �� rBL),
Q(k) simplifies to:
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Define l(k) as the set of macroscopic states indexed from 0 to k � 1 (i.e., nA � 0, 1,...or k � 1). Similarly, define h(k)
� {k, k � 1,...N}, � {0, 1,...k}, � {k � 1,...N}, and partition Q correspondingly.

Errors. P1(k) � P (unlocking of kth channel assigned too late) � P [leaving from to occurs be-
tween tk and tk � �k] �

P2(k) � P (unlocking of k’th channel assigned too early) � 1 � P (unlocking of k'th channel is not assigned too
early) � 1 � P (all leavings from h(k) to l(k) between time tk�1 and tk are shorter than �k] � 1 � {P [a leaving from
h(k) to l(k) between time tk�1 and tk is shorter than �k]} � 

where is the expected number of leavings from h(k) to l(k) between time tk�1 and tk. Both P1(k) and P2(k) are
functions of the cutoff time �k. Search for �k such that calculated P1(k) equals P2(k). The total probability of misas-
signing tk is P(k) � P1(k)�P2(k).

Iteration.  � rLB/rLC, but rLC is not known a priori. Solve by iteration: in the first round, set calculate
(as above), and then find  for each k � No,...1. Estimate rLC by

Repeat by setting Stop iteration if for all k � No,...1.
Results. Time sequence of unlocking events, error estimate P(k) for each conductance

level, estimate for rLC (unlocking rate, estimated from the average wait time for unlocking).

How Applicable Is a Closed-Open-Blocked Fit to Scheme I?

A valid concern is that Scheme I (itself a four-state scheme), extended by short-lived (“flickery”) closed states, is not
readily seen to reduce to a simple three-state, Closed-Open-Blocked (C-O-B) scheme. How do the burst durations
determined from the multichannel C-O-B fit compare to the fits to the distributions of single-channel burst dura-
tions (particularly for constructs 835�837, cut-�R, and Flag-cut-�R, which showed two components in the distribu-
tions of burst durations)? This is justified as follows. The C-O-B fit merely separates out short flickery closures (i.e.,
it is the multichannel implementation of single-channel burst analysis), and it works because the mean duration of
flickery closures (�10 ms) is 	100-fold shorter than that of interburst closures, while the length of the mean burst
durations varied only less than fourfold. So, for the purpose of separating flickery from interburst closures, pooling
the open states is certainly justifiable. This assertion is supported by the good agreement between 
b extracted from
multichannel fits (see Table I in text), and the means of the distributions of bursts obtained from isolated openings
(Fig. 8). But since we were also concerned about the validity of this approach, we tested it extensively on simulated
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traces (as briefly mentioned in the discussion). As an example, we took Scheme I with rates (s�1) k1 � 0.7, k�1 �
3.5, k2 � 0.3, k-2 � 0.2, k3 � 0.9, a typical set for cut-�R channels (rates between C1 and C2 were set to simulate satu-
rating [ATP], rC1,C2 � 10 s�1, rC2,C1 � 0.1 s�1). We next extended this scheme with blocked states B1 and B2, commu-
nicating with O1 and O2, respectively, and set rO1,B1 � rO2,B2 � 3 s�1, rB1,O1 � rB2,O2 � 100 s�1, to elicit flickery closures
with characteristics typical of those seen in our recordings. We then simulated a 3-min segment with four channels
obeying this extended six-state scheme, and repeated the simulation five times with the same rate constants, but a
different random seed value. The five traces were then idealized, and fitted separately using the C-O-B scheme, as
described in methods (compare Csanády, 2000), with td � 4 ms. The mean (�SEM) estimates from the five fits
were rCO � 0.68 � 0.02 s�1, rOC � 3.0 � 0.2 s�1, rOB � 2.7 � 0.1 s�1, rBO � 94 � 2 s�1, predicting mean burst and in-
terburst durations of 
b � 353 � 26 ms, and 
ib � 1,485 � 41 ms, respectively; the latter values being closely similar
to the 
b � 340 ms and 
ib � 1,543 ms predicted by the model (
b is given by Eq. 1 of text, 
ib � 1/k1). This is despite
the fact that the burst duration distribution for this scheme is characterized by two clearly discernible components
with parameters 
sh � 262 ms, 
l � 928 ms, ash � 0.88, al � 0.12.

Derivation of Observable Parameters for Scheme I

Mean open time (burst duration). The mean open time (see 
b in text) is the weighted average of the durations of var-
ious types of openings, each weighted by its fractional occurrence. Openings either close from O1, after venturing
m times to O2, m � 0,...�, “type 1m;” or from O2, upon entering O2 the mth time, m � 1,... �, “type 2m.” The mean du-
rations of individual dwells at O1 or O2 are and respectively. Let 
�1 be the
probability that a channel in O1 will next exit to C1, and 
2 the probability that it will next exit to O2. Similarly, 
�2

and 
3 denote probabilities that a channel in O2 next exits to O1 or C1, respectively. Hence, 
�1 � k�1/(k�1 � k2),

�2 � k�2/(k�2 � k3), and 
3 � k3/(k�2 � k3). The mean duration of a type 1m opening is (m � 1) � 
O1 � m � 
O2,
with fractional occurrence while type 2m openings last for m � (
O1 � 
O2), and occur with prob-
ability. Hence,

from which, using identities

and for q � 1:

(S5)

Substituting for 
�1, 
2, 
�2, 
3, 
O1, and 
O2 from the rates, Eq. S5 reduces to Eq. 1 in the text.
Survivor function of open times (burst durations). Numbering the states of Scheme I in the order C1, C2, O1, O2, the

Q matrix of the system is:

in particular, the submatrix of the set of states {O1,O2} is:
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The Eigenvalues of the submatrix are:

where D � (k�1 � k2 � k�2 � k3)2 � 4(k�1k3 � k�1k�2 � k2k3). The exponential of the submatrix is:

The survivor function of {O1,O2} is:

(see Csanády, 2000), where (since all openings start in O1); i.e., the survivor function simplifies
to the sum of the first row of the submatrix:

(S6)

The coefficient of the first term and give ash and 
sh, respectively (Eqs. 2 and 3 in text), while the second coef-
ficient and yield al and 
l (Eq. 4 in text). As a check, the mean of the above distribution, �t	 � ash
sh � al
l, is
identical to 
b in Eq. S5 (Eq. 1 in text).

Time course of unlocking from AMPPNP-mediated lock. The predicted time course of unlocking is obtained by solving
the differential equation describing scheme

with initial condition o1(0) � k�2/(k2 � k�2), o2(0) � k2/(k2 � k�2). The vector solution of equation:

with the above initial condition is:

(S7)

from which the time course, obtained as o(t) � o1(t) � o2(t), contains a slow component with time constant 1/k�2

(see Eq. 5 in text) and fractional amplitude [k2/(k2 � k�2)] � [k�1/(k�1 � k�2)] (see Eq. 6 in text); as well as a fast
component with time constant 1/k�1 and complementary fractional amplitude.
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