SUPPLEMENTAL MATERIAL ## Schmidt et al., https://doi.org/10.1084/jem.20171696 Figure S1. **EGF-R but not ADAM17 expression intensity on tissue microarrays is correlated with survival of colorectal carcinoma patients. (A)** IHC staining patterns depicting no and high expression of EGF-R and ADAM17. **(B and C)** Distribution of staining intensity of ADAM 17 (n = 361) and EGF-R (n = 330); 0 = no expression, + = no expression (n = no) (Figure S2. **Gene expression analysis of intestinal organoids from Apc**^{Min/*} **and Apc**^{Min/*}::ADAM17^{ex/ex} mice. **(A)** ADAM17 protein expression in organoids obtained from Apc^{Min/*} mice and Apc^{Min/*}::ADAM17^{ex/ex} mice were compared with organoids from WT mice. Four independent experiments were performed, and one representative experiment is shown. **(B)** qRT-PCR analysis of mRNA expression of IL-6, IL-6 receptor (IL-6R), IL6ST (also known as gp130), yap-1, lats1, and cyr61 expression in indicated organoids from four independent experiments (n = 4). qRT-PCR data were normalized to GAPDH. *, P < 0.05; ***, P < 0.01; ****, P < 0.001; ****, P < 0.001; ns, not significant by unpaired t test with Welch's correction. **(C)** Organoids from Apc^{Min/*} and Apc^{Min/*}::ADAM17^{ex/ex} mice were cultured for 72 h in APC tumor medium (untr.) or mixed with DMSO for control as well as in the presence of GI (GI254023X, ADAM10-selective inhibitor, 30 μ M), GW (GW280264X, ADAM10- and ADAM17-selective inhibitor, 30 μ M), or Marimastat (MM; pan-metalloprotease inhibitor; 100 μ M). Supernatants from organoids were measured by ELISA for soluble amphiregulin. Values were normalized to organoid number per well. **, P < 0.01; ***, P < 0.001 by Kruskal-Wallis test. Figure S3. **Tumor distribution in the intestine of Apc^{Min/+} and Apc^{Min/+}::ADAM17^{ex/ex} mice.** Distribution of dysplasias within the small intestine from Apc^{Min/+} mice and Apc^{Min/+}::ADAM17^{ex/ex} mice. **(A and B)** The number of dysplasias was determined macroscopically within the small intestine (duodenum, jejunum, ileum) and colon of Apc^{Min/+} mice (n = 15; A) and Apc^{Min/+}::ADAM17^{ex/ex} mice (n = 14; B). Figure S4. Infiltration of macrophages and T cells in the intestine of $Apc^{Min/+}$ and $Apc^{Min/+}$:: $ADAM17^{ex/ex}$ mice. (A) Representative IHC staining of unaffected tissue and dysplasia in the small intestine of WT and $Apc^{Min/+}$:: $ADAM17^{ex/ex}$ mice with antibodies for F4/80. Bars, 100 μ m. (B) Representative IHC staining of unaffected tissue of the small intestine of $Apc^{Min/+}$ and $Apc^{Min/+}$:: $ADAM17^{ex/ex}$ mice with anti-CD3 antibodies. Bars: (top) 100 μ m; (bottom) 50 μ m. Figure S5. Loss of ADAM17 alters the gut microbiome. (A) Nonmetric multidimensional scaling (nMDS) plot of unweighted Unifrac distances (16S rDNA V3/V4) of fecal microbial communities. Note that ADAM17 wt/wt (wt), wt/ex (hetero), and ex/ex (homo) group separation was confirmed by multivariate statistics (ANOSIM and AMOVA). (B) Indicator OTU analysis of the respective genotypes depicted by heat map. Clustering of z-score normalized OTU abundances was performed using unweighted pair-group method with arithmetic mean (UPGMA). ADAM17 wt/wt mice (n = 10), ADAM17wt/ex mice (n = 10), ADAM17ex/ex mice (n = 12). (C) Box plot showing inferred functions of KEGG categories significantly different in WT and ADAM17ex/ex (ex/ex) mice. Boxes represent relative proportion of sequences assigned to predicted functions. Whiskers denote 5th–95th percentiles. Line within box represents median values with mean as a plus sign. The significances of difference denoted in the figure were obtained by White's nonparametric test. Benjamin–Hochberg false discovery rate was used to correct for multiple testing.