SUPPLEMENTAL MATERIAL

Lyons et al., https://doi.org/10.1084/jem.20161435

Figure S1. A large molecular weight protein fraction contains ERBIN, STAT3, and SMAD2/3. (A and B) Immunoblots of protein fractions obtained by gel filtration chromatography of 293T whole cell lysates from two independent experiments with or without treatment with IL-6 (A) and representative corresponding absorbance of eluent (B). Large molecular weight fractions containing ERBIN, STAT3, SMAD2/3, and, after IL-6 treatment, pSMAD2/3 are indicated by the red box. mAU, milli–arbitrary units.

JEM S13

Figure S2. Increased T reg cells in *ERBB2IP*^{mut} and *STAT3*^{mut} patients are not associated with altered IL-2 responsiveness and are independent of the mutant *STAT3* domain. (A) Scatter plot showing blasting lymphocytes (top) and histograms (bottom) demonstrating CD25 induction in naive CD4 cells cultured under iT reg cell conditions with up to 40-fold lower IL-2 concentrations (50, 100, 250, and 500 pg/ml) increasing from left to right. FSC, forward scatter; SSC, side scatter. (B) Scatter plots showing FOXP3 and CD25 expression under the same iT reg cell conditions with reduced IL-2. iT reg cell percentage is indicated in bold. (C) Representative histogram (left) and combined data (right) showing STAT5 phosphorylation (pSTAT5; Y694) in control (n = 4) and $STAT3^{mut}$ (n = 10) CD4 T cells. (D) Representative histogram (left) and combined data (right) showing STAT3 phosphorylation (pSTAT3; Y705) in control (n = 4) and $ERBB2IP^{mut}$ (n = 3) CD4 T cells. (E, left) Contour plot showing FOXP3 and CD25 expression in control naive CD4⁺ T cells after siRNA-mediated silencing of STAT3 (*siSTAT3*) or ERBIN (*siERBB2IP*), compared with scrambled siRNA control (*siControl*), showing spontaneous iT reg cells (FOXP3+CD25^{bright}) after weak TCR stimulation under nonskewing conditions. (Right) Combined data. (F) FOXP3 induction in total CD4⁺ T cells after short-term stimulation (right) and prevalence of T reg cells among memory (CD45R0⁺) CD4 cells (left) from control (n = 20) or *STAT3*-mutant (*STAT3*^{mut}) patients with SH2-domain mutations (n = 7) or DNA-binding-domain mutations (n = 5). All data are representative or combined from at least two independent experiments and are shown as the mean \pm SEM. Paired and unpaired two-tailed Student's t tests and Mann-Whitney tests were used where appropriate. *, P < 0.005; ***, P < 0.005; ****, P < 0.005.

Figure S3. **TGF-\beta can induce functionally active IL-4R\alpha expression in lymphocytes to promote STAT6-specific target expression.** (A) SMAD-reporter activity induced by exogenous TGF- β (media + TGF- β) or by media alone containing 10% FCS, relative to unsupplemented media. AU, arbitrary units. (B) Relative quantitation of T-BET (*TBX21*) expression in Jurkat T cells at baseline or after treatment with 5 ng/ml TGF- β for 6 h. (C) Percent change in IL-4R α surface expression in Jurkat T cells after treatment with 5 ng/ml TGF- β over the indicated duration, with or without pretreatment with 50 ng/ml IL-6 for 72 h. (D) Phosphorylation of STAT6 (Y641) among IL-4R α bright (IL-4R $^{\rm hi}$) and IL-4R α dim (IL-4R $^{\rm hi}$) lymphocytes from *ERBB2IP*^{mut} (n = 3), *STAT3*^{mut} (n = 5), and control (n = 4) individuals after IL-4 stimulation. (E) Percent of memory B (CD27+CD19+) lymphocytes from control (n = 8), and *ERBB2IP*^{mut} (n = 3) patients expressing the STAT6-target CD23 before and after short-term in vitro exposure to 50 ng/ml IL-4. White circle, control; red circle, *STAT3*^{mut}; blue circle, *ERBB2IP*^{mut}. Data are combined from at least three independent experiments and are represented as the mean \pm SEM. Unpaired two-tailed Student's t tests and Mann-Whitney tests were used where appropriate. *, P < 0.05.

JEM S15

Figure S4. Greater IL-4R α expression and increased GATA3 induction in *STAT3*^{mut} and *ERBB2IP*^{mut} naive CD4 lymphocytes are normalized by SMAD3 inhibition. (A) Dose response to TGF- β in the SMAD-reporter line basally and after preincubation with a selective SMAD3 inhibitor (SMAD3i) or TGF- β R1 inhibitor (TGF β R1i). AU, arbitrary units. (B) Percentage of activated (CD69⁺) naive CD4 cells coexpressing GATA3 and IL-4R α (GATA3⁺IL-4R α ⁺) after short-term culture with weak TCR stimulation under nonskewing conditions in the presence or absence of 5 μ M SMAD3i, 1 μ M TGF β R1i, or 20 μ g/ml neutralizing TGF- β antibody (α TGF β 1). Data are combined from at least three independent experiments and are represented as the mean \pm SEM. Unpaired two-tailed Student's t test was used. *, P < 0.05.

Table S1. Comparison of phenotypes between ERBB2IP^{mut} and STAT3^{mut} patients

	ERBB2IP ^{mut}	STAT3 ^{mut}	Reference
Clinical phenotype			
Eczema	66% (2/3)	95%	Freeman and Holland, 2009
Scoliosis	100% (3/3)	60%	Freeman and Holland, 2009
Hyperextensibility ^a	100% (3/3)	70%	Freeman and Holland, 2009
Arterial dilation/tortuosity ^b	100% (3/3)	60%	Freeman and Holland, 2009
osinophilic esophagitis ^{c,d}	100% (3/3)	50%	Hsu et al., 1993
5. aureus susceptibility ^e	66% (2/3)	87%	Freeman and Holland, 2009
ronchiectasis/pneumatocele	0% (0/3)	70%	Freeman and Holland, 2009
Aucocutaneous candidiasis	0% (0/3)	83%	Freeman and Holland, 2009
ood allergy	33% (1/3)	38%	Siegel et al., 2013
mmunological phenotype			
erum IgE	normal to increased	increased	Freeman and Holland, 2009
eripheral eosinophils	normal to increased	normal to increased	Freeman and Holland, 2009
eripheral T reg cells	increased	increased	Freeman and Holland, 2009
h1 cytokine production	intact	intact	Ma et al., 2015
h2 cytokine production	increased	increased	Ma et al., 2015
L-17A production	intact	reduced	Milner et al., 2008
L-21 production	intact	reduced	Ma et al., 2012
cell memory	intact	impaired	Siegel et al., 2011
3 cell memory/class switch	intact	impaired	Deenick et al., 2013

 $^{^{}a}$ All $\textit{ERBB2IP}^{mut}$ individuals had Beighton scores >5. However, two of these individuals were \leq 14 yr old at the time of this study.

^bAll *ERBB2IP*^{mut} individuals had aortic root dilation (z-score range 2.2–2.7), whereas *STAT3*^{mut} individuals have predominantly smaller arterial disease.

SAIL ERBB2IP^{mut} individuals had biopsy-proven eosinophilic esophagitis (>15 eosinophils/high-power field while on maximal proton pump inhibitor therapy for acid suppression).

^dDefined as absolute eosinophil count >500 cells/µl, 1/2 normalized with treatment of eosinophilic esophagitis.

^eCutaneous susceptibility; all affected ERBB2IP^{mut} individuals also had recurrent streptococcal pharyngitis requiring tonsillectomy.

REFERENCES

- Deenick, E.K., D.T. Avery, A. Chan, L.J. Berglund, M.L. Ives, L. Moens, J.L. Stoddard, J. Bustamante, S. Boisson-Dupuis, M. Tsumura, et al. 2013. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. *J. Exp. Med.* 210:2739–2753. http://dx.doi.org/10.1084/jem.20130323
- Freeman, A.F., and S.M. Holland. 2009. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. *Pediatr. Res.* 65:32R–37R. http://dx.doi.org/10.1203/PDR.0b013e31819dc8c5
- Hsu, A.P., J. Davis, J.M. Puck, S.M. Holland, and A.F. Freeman. 1993. Autosomal dominant hyper IgE syndrome. *In* GeneReviews. R.A. Pagon, M.P. Adam, H.H. Ardinger, S.E. Wallace, A. Amemiya, L.J.H. Bean, T.D. Bird, C.T. Fong, H.C. Mefford, R.J.H. Smith, and K. Stephens, editors. University of Washington, Seattle, WA.
- Ma, C.S., D.T.Avery, A. Chan, M. Batten, J. Bustamante, S. Boisson-Dupuis, P.D.Arkwright, A.Y. Kreins, D. Averbuch, D. Engelhard, et al. 2012. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. *Blood*. 119:3997–4008. http://dx.doi.org/10.1182/blood-2011-11-392985
- Ma, C.S., N.Wong, G. Rao, D.T.Avery, J. Torpy, T. Hambridge, J. Bustamante, S. Okada, J.L. Stoddard, E.K. Deenick, et al. 2015. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J. Allergy Clin. Immunol. 136:993–1006.e1. http://dx.doi.org/10.1016/j.jaci.2015.05.036
- Milner, J.D., J.M. Brenchley, A. Laurence, A.F. Freeman, B.J. Hill, K.M. Elias, Y. Kanno, C. Spalding, H.Z. Elloumi, M.L. Paulson, et al. 2008. Impaired T_H17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. *Nature*. 452:773–776. http://dx.doi.org/10.1038/nature06764
- Siegel, A.M., J. Heimall, A.F. Freeman, A.P. Hsu, E. Brittain, J.M. Brenchley, D.C. Douek, G.H. Fahle, J.I. Cohen, S.M. Holland, and J.D. Milner. 2011. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. *Immunity*. 35:806–818. http://dx.doi.org/10.1016/j.immuni.2011.09.016
- Siegel, A.M., K.D. Stone, G. Cruse, M.G. Lawrence, A. Olivera, M.-Y. Jung, J.S. Barber, A.F. Freeman, S.M. Holland, M. O'Brien, et al. 2013. Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. *J. Allergy Clin. Immunol.* 132:1388–1396. http://dx.doi.org/10.1016/j.jaci.2013.08.045

JEM S17