SUPPLEMENTAL MATERIAL

von Brühl et al., http://www.jem.org/cgi/content/full/jem.20112322/DC1

Video 1. Computed tomography 3D movie of the thrombosed IVC in vivo. The dimension of DVT formation was evaluated by contrast-enhanced computed tomography in anaesthetized mice. Animals were imaged with the Inveon small animal PET/CT scanner. Arrows point to the cranial and caudal border of the thrombus in the IVC (frame rate: 10.03 frames/s).

Video 2. Leukocytes covering the vessel wall of the IVC. 3D movie of IVC thrombus 48 h after the flow-restricting procedure. Leukocytes (green) attached to the vessel wall (blue) visualized by two-photon microscopy (frame rate: 6.03 frames/s).

Video 3. Crawling neutrophils shortly after DVT induction. Neutrophils (green, labeled with an anti–Ly6G-FITC antibody) crawling along the venous vessel wall (red) 2 h after the flow restricting procedure (video still in Fig. 3 A). Tracking of a 4D reconstruction of images acquired by intravital time lapse two-photon microscopy (acquisition rate: 3 frames/min; frame rate: 8.11 frames/s).

Video 4. Neutrophils recruited to the developing thrombus. GFP+ cells (green) in LysM-eGFP are also stained by a PE-labeled anti-Ly6G antibody (red), indicating neutrophils (yellow; video still in Fig. 3 F). Thrombus in the IVC 6 h after DVT induction visualized by two-photon microscopy is presented in a 3D rendering (frame rate: 5.03 frames/s).

Video 5. Monocytes attached to venous vessel wall. Representative movie of thrombi from CX3CR1-eGFP (green) mice analyzed by two-photon microscopy showing the recruitment of monocytes (green) to the vessel wall (blue) 6 h after DVT induction (video still in Fig. 3 F). Neutrophils were stained by i.v. application of a PE-labeled anti-Ly6G antibody (red; frame rate: 6.02 frames/s).

JEM S1

Video 6. NET in the thrombus visualized in 3D. Representative movie of a cross sections of WT thrombi analyzed by two-photon microscopy showing the 3D structure of NETs (blue) visualized by Hoechst staining. Arrowhead, cell nucleus; arrow, NET (frame rate: 25 frames/s).

Video 7. NETs in vivo. Time-lapse movie of the IVC 4 h after flow reduction acquired by intravital two-photon microscopy. Extracellular DNA was visualized by Sytox orange (red; arrow) originating from neutrophils (green, labeled with an anti-Ly6G-FITC antibody; arrowhead) attached to the venous vessel wall (blue; frame rate: 10 frames/s).

Video 8. Platelets and neutrophils forming a thrombus in the IVC. Intravital time-lapse movie of a cross section of the IVC vessel wall (red) imaged by two-photon microscopy in LysM-eGFP mice (video still in Fig. 7 C). A developing thrombus (arrowhead) consisting of neutrophils (green) and platelets (yellow) is forming 4 h after DVT induction. Plasma is colored in blue (acquisition rate: 30 frames/min; frame rate: 8.04 frames/s).

Video 9. Surface of the IVC vessel wall covered by neutrophils and platelets. 4D movie of the developing mural thrombus visualized by intravital two-photon microscopy in LysM-eGFP mice. Neutrophils (green) and platelets (yellow) are densely packed on the luminal surface of the IVC wall (red) 6 h after DVT induction. Arrowheads pointing to neutrophils recruited to the thrombus (acquisition rate: 3 frames/min; frame rate: 6.19 frames/s).

Video 10. Platelets support neutrophil recruitment to the thrombus. Cross section of the venous vessel wall (red) in the IVC visualized by intravital two-photon microscopy in LysM-eGFP mice. Neutrophils (green), covered with platelets (yellow), are recruited from the blood stream (blue) to the forming thrombus (arrowheads) 6 h after DVT induction (acquisition rate: 3 frames/min; frame rate: 5.19 frames/s).

Table S1. List of antibodies, providers, and detection methods used for immunohistochemistry and immunofluorescence microscopy

Antigen	Primary antibody	Clone	Provider	Secondary antibody	Provider
CD 41	Rat	MWReg30	BD	Donkey anti-rat Alexa Fluor 594	Invitrogen
CD 45	Rat	30-F11	eBioscience	Donkey anti-rat Alexa Fluor 594	Invitrogen
Ly-6G	Rat	1A8	BD	Donkey anti-rat Alexa Fluor 594	Invitrogen
CD 62P	Rat	RB40.34	BD	Goat anti-rat Alexa Fluor 488	Invitrogen
MPO	Rabbit	A0398	Dako	Donkey anti-rabbit Alexa Fluor 488	Invitrogen
NE	Rabbit	ab68672	Abcam	Goat anti-rabbit Alexa Fluor 594	Invitrogen
F4/80	Rat	BM8	eBioscience	Anti-R-PE	Rockland
Histone H3	Rabbit	ab1791	Abcam	Goat anti-rabbit Alexa Fluor 594	Invitrogen
H2A-H2B-DNA	Mouse	Losman et al., 1992	V. Brinkmann	Goat anti-mouse Alexa Fluor 594	Invitrogen
TF	Rabbit		ADI	Donkey anti-rabbit Alexa Fluor 594	Invitrogen
PDI	Mouse	RL90	Thermo Fisher Scientific	Goat anti-mouse Alexa Fluor 594	Invitrogen
fibrinogen	Rabbit	A0080	DAKO	Donkey anti-rabbit Alexa Fluor 594	Invitrogen
vWF	Rabbit	AB7356	Millipore	Donkey anti-rabbit Alexa Fluor 488	Invitrogen

PDI, protein disulfide isomerase.

REFERENCES

Losman, M.J., T.M. Fasy, K.E. Novick, and M. Monestier. 1992. Monoclonal autoantibodies to subnucleosomes from a MRL/Mp(-)+/+ mouse. Oligoclonality of the antibody response and recognition of a determinant composed of histones H2A, H2B, and DNA. *J. Immunol.* 148:1561–1569.