SUPPLEMENTAL MATERIAL

Betz et al., http://www.jem.org/cgi/content/full/jem.20091548/DC1

Figure S1. Analysis of *Batf* transcripts in *Batf* $^{\Delta Z/\Delta Z}$ mice. (A) Splenocytes from $Batf^{AZ/\Delta Z}$, and $Batf^{\Delta Z/\Delta Z}$ mice were stimulated for 6 h with 2.5 ng/ml PMA and 125 ng/ml ionomycin (P + I). RNA was isolated and converted to cDNA, and semi-qPCR was performed using *Batf* primer Set 1 (forward, 5′-GATGTGAGGAAAGTTCAGAG-3′; reverse, 5′-GTGGCGAGCTGATGTGAG-3′) and β -actin primers as a control. A representative gel from more than five independent experiments is shown. (B) Semi-qPCR was performed on splenocyte RNA as in A using *Batf* primer Set 2 (forward, 5′-GCAGTGACTC-CAGCTTCAGC-3′; reverse, 5′-GTGGCGAGCTGATGTGAG-3′), primer Set 3 (forward, 5′-GTTCTGTTTCTCCAGGTCC-3′; reverse, 5′-GAAGGGTGTCGGCTTTCTG-3′), and β -actin primers as a control. Representative gels from three independent experiments are shown. M, DNA size marker in kbp.

JEM S1

Figure S2. Quantifying thymic T cell subsets and peripheral CD4+ T cell differentiation in *Batf*^{ΔZ/ΔZ} **mice.** (A) Thymocytes from *Batf*^{+/+} and *Batf*^{ΔZ/ΔZ} mice were analyzed for the indicated T cell subsets as previously described (Williams et al. 2001. *Eur. J. Immunol.* doi:10.1002/1521–4141(200105)31:5<1620::AlD-IMMU1620>3.0.CO;2-3). Individual data from five sex-matched *Batf*^{+/+} and *Batf*^{ΔZ/ΔZ} littermates are plotted. Horizontal bars indicate mean (n = 5). (B) Splenocytes from *Batf*^{+/+} and *Batf*^{ΔZ/ΔZ} mice were analyzed for Foxp3+ expression in CD4+CD25+ and CD4+CD25- populations (T reg) as previously described (Lee et al. 2007. *J. Immunol.* 178:301–311). A representative plot is shown with data expressed as the percentage of Foxp3+ cells (top) or as absolute number of T reg cells per spleen (bottom), averaged from three independent experiments (n = 3). Error bars indicate SE. *, P < 0.05. (C) Naive T cells from *Batf*^{ΔZ/ΔZ} and *Batf*^{+/+} spleens were cultured for 5–6 d with 5 μg/ml anti-CD3ε, 2 μg/ml anti-CD28, 20 U/ml rhIL-2, 2 ng/ml rmIFN-γ, and 10 μg/ml anti-IL-4 mAb. Cells were stained with anti-IFN-γ and anti-IL-17A mAb and analyzed by flow cytometry. Representative plots are shown along with data averaged from five independent experiments (n = 5). Error bars indicate SE. (D) Magnetic separation was used to isolate naive CD4+CD62L+CD25-CD44-T cells from *Batf*^{+/+} and *Batf*^{+/+} and *Batf*^{+/+} spleens. 1 × 10⁵ cells/well in 96-well plates were cultured for 6 d with 5 μg/ml anti-CD3ε, 2 μg/ml anti-CD28, 100 U/ml rhIL-2, and 5 ng/ml rhTGF-β1 (BioLegend) to induce T reg cells. Differentiation was assessed as in B. A representative plot is shown along with mean data expressed as the percentage of Foxp3+ cells from four independent cell preparations per genotype (n = 4). Error bars indicate SE. (E) Naive T cells from *Batf*^{ΔZ/ΔZ} and *Batf*^{+/+} spleens were cultured in Th17 conditions (Wang et al. 2009. *Mucosal Immunol.* doi:10.1038/mi.2008.84), stained, and ana

Table S1. qPCR primers

Transcript	Sequence of primers			
Batf	Sense, 5'-GTTCTGTTTCTCCAGGTCC-3'; antisense, 5'-GAAGAATCGCATCGCTGC-3'			
IL-17A	Sense, 5'-CTCCAGAAGGCCCTCAGACTAC-3'; antisense, 5'-AGCTTTCCCTCCGCATTGACACAG-3'			
IL-21	Sense, 5'-ATCCTGAACTTCTATCAGCTCCAC-3'; antisense, 5'-GCATTTAGCTATGTGCTTCTGTTTC-3'			
T-bet	Sense, 5'-CAACAACCCCTTTGCCAAAG-3'; antisense, 5'-TCCCCCAAGCAGTTGACAGT-3'			
IL-23R	Sense, 5'-GCCAAGAGAACCATTCCCGA-3'; antisense, 5'-TCAGTGCTACAATCTTCAGAGGAC-3'			
Gata-3	Sense, 5'-AGAACCGGCCCCTTATCAA-3'; antisense, 5'-AGTTCGCGCAGGATGTCC-3'			
IL-4	Sense, 5'-AGATCATCGGCATTTTGAACG-3'; antisense, 5'-TTTGGCACATCCATCTCCG-3'			
FoxP3	Sense, 5'-GGCCCTTCTCCAGGACAG-3'; antisense, 5'-GCTGATCATGGCTGGGTTGT-3'			
Pax5	Sense, 5'-AGTCTCCAGTGCCGAATG-3'; antisense, 5'-TCCGTGGTGGAAGATG-3'			
Bcl-6	Sense, 5'-TCGTGAGGTCGTGGAGAAC-3'; antisense, 5'-AGAGAAGAGGAAGGTGCTGAG-3'			
Irf4	Sense, 5'-GGACTACAATCGTGAGGAGGAC-3'; antisense, 5'-ACGTCACAGGACATTGATATGG-3'			
Prdm1	Sense, 5'-AACACGTGGTACAACCCAAAG-3'; antisense, 5'-AGGCTGCAGAGATGGATGTAG-3'			
Xbp1s	Sense, 5'-TGAGTCCGCAGCAGGT-3'; antisense, 5'-AGACTCTGGGGAAGGACATTT-3'			
Aicda	Sense, 5'-TGCTACGTGGTGAAGAGGAG-3'; antisense, 5'-TCCCAGTCTGAGATGTAGCG-3'			
β-actin	Qiagen QT00095242			
Hprt	Sense, 5'-CTCCTCAGACCGCTTTTTGC-3'; antisense, 5'-GAGGGTAGGCTGGCCTATAGGCT-3'			

The sequences of oligonucleotide primers used for qPCR analysis of the indicated transcripts in T and B cell RNA from $Batf^{+/+}$ and $Batf^{\Delta Z/\Delta Z}$ mice are listed.

Table S2. Antibodies.

Ab	Clone number	Application	Source
Anti-mouse CD4	GK1.5	Flow cytometry	BD
Anti-mouse CD19	6D5	Flow cytometry	BioLegend
Anti-mouse CD8	53-6.7	Flow cytometry	Miltenyi Biotec
Anti–mouse IFN-γ	XMG1.2	Flow cytometry	BioLegend
Anti–mouse IL–4	11B11	Flow cytometry	BioLegend
Anti–mouse IL–17A	TC11-18H10.1	Flow cytometry	BioLegend
Anti–mouse IgM	II/41	Flow cytometry	eBioscience
Anti–mouse IgG1	A85-1	Flow cytometry	BD
Anti–mouse IgE	R35-72	Flow cytometry	BD
Anti–mouse B220	RA3-6B2	Flow cytometry	eBioscience
Anti–mouse CD62L	MEL-14	Flow cytometry	BioLegend
Anti–mouse CXCR5	2G8	Flow cytometry	BD
Anti–mouse CD44	IM7	Flow cytometry	BioLegend
Purified anti-mouse IgM	II/41	ELISA	BD
Biotin anti–mouse IgM	II/41	ELISA	BD
Purified anti-mouse IgG1	A85-3	ELISA	BD
Biotin anti-mouse IgG1	A85-1	ELISA	BD
Purified anti–mouse IgA	C10-1	ELISA	BD
Biotin anti-mouse IgA	C10-1	ELISA	BD
Rat anti-mouse B220	RA3-6B2	IHC	eBioscience
FITC rabbit anti-rat IgG	FI-4000	IHC	Vector Laboratories
Biotin-PNA	B-1075	IHC	Vector Laboratories
Texas Red-avidin	A-2006	IHC	Vector Laboratories
Anti–mouse CD25	PC61.5	Flow Cytometry	eBioscience
Anti–mouse FoxP3	FJK-16s	Flow Cytometry	eBioscience
Goat anti-mouse IgG1	1070-01	IHC, ELISA	SouthernBiotech
Goat anti-mouse IgG2c	1079-01	IHC	SouthernBiotech
Biotin rabbit anti-goat IgG	BA-5000	IHC	Vector

Antibodies used in this study are listed together with clone numbers, commercial source, and experimental application.

JEM S3