SUPPLEMENTAL MATERIAL Budhu et al., http://www.jem.org/cgi/content/full/jem.20091279/DC1 Figure S1. SIINFEKL peptide concentration required for optimal killing of B16 cells in collagen–fibrin gels. B16 cells were pulsed with the indicated concentrations of SIINFEKL peptide and coincubated at a concentration of $10^5/ml$ collagen–fibrin gel without or with 10^7 OT–1 cells/ml of gel at 37° C for 24 h. The gels were lysed and assayed for viable B16 cells. Data shown represent mean \pm SEM of n = 3 experiments performed in duplicate. JEM S1 Figure S2. CMA inhibits OT–1 cell killing of SIINFEKL–B16 cells. Collagen-fibrin gels containing 10^5 SIINFEKL–B16 cells and 10^6 OT–1 cells/ml of gel were overlaid with 0.5 ml RPMI 1640 containing 10% FBS, 5×10^{-5} M β –ME, and the indicated concentration of CMA and incubated at 37° C for 24 h. The gels then were lysed and assayed for viable B16 cells as described in Materials and methods. Data shown represent mean \pm SEM of n=3 experiments performed in duplicate. Figure S3. OT-1 cell killing of SIINFEKL-B16 cells in spheroids versus single SIINFEKL-B16 cells dissociated from these spheroids. Collagenfibrin gels containing 10⁶ OT-1 cells and 10³ SIINFEKL peptide-pulsed B16 spheroids or 10⁵ SIINFEKL-B16 cells dissociated from SIINFEKL peptide-pulsed spheroids were incubated in OT-1 growth medium at 37°C. At 24 and 48 h, gels were lysed and surviving B16 cells were assessed by colony formation as described in Fig. 1. Shown is the mean percentage of B16 cells killed ± SEM for three experiments, each performed in duplicate. Table S1. Activated OT-1 cells kill growing and nongrowing SIINFEKL-pulsed B16 cells with approximately equal efficiency | OT-1 cells | 10 ⁴ B16 cells/ml | | 10 ⁵ B1 | 6 cells/ml | 10 ⁶ B16 | Mean | | |-----------------|------------------------------|------------|--------------------|------------|---------------------|---------------|------------| | | Growing | Nongrowing | Growing | Nongrowing | Growing | Nongrowing | | | | % | % | % | % | % | % | % | | 10 ⁴ | 9 ± 3 | 11 ± 3 | 14 ± 4 | 10 ± 4 | 14 ± 1 | 14 <u>+</u> 1 | 12 ± 2 | | 10 ⁵ | 27 ± 7 | 26 ± 4 | 31 ± 5 | 30 ± 3 | 34 ± 4 | 31 ± 4 | 30 ± 3 | | 10 ⁶ | 65 ± 6 | 64 ± 6 | 65 ± 1 | 61 ± 7 | 66 ± 6 | 61 <u>+</u> 6 | 62 ± 2 | | 10 ⁷ | 98 ± 2 | 97 ± 1 | 99 ± 1 | 98 ± 1 | 98 ± 1 | 97 ± 1 | 98 ± 1 | Killing efficiencies from Fig. 2 and unpublished data. Values represent the mean percentage of B16 killed ± SEM at t = 24 for three experiments performed in duplicate. **Table S2.** Addition of naïve spleen cells had no effect on killing efficiency of OT-1 cells in collagen-fibrin gels | OT-1 cells/ml ⁻ | Naive spleen cells/ml | Total lymphocytes/ml | B16 killed (±
SEM) | |----------------------------|-----------------------|----------------------|-----------------------| | | | | % | | 0 | 0 | 0 | 0 | | 0 | 10 ⁷ | 10 ⁷ | 0 | | 10 ⁴ | 0 | 104 | 18 ± 5 | | 10 ⁴ | 9.99×10^{6} | 10 ⁷ | 19 ± 3 | | 10 ⁵ | 0 | 10 ⁵ | 35 ± 6 | | 10 ⁵ | 9.9×10^{6} | 10 ⁷ | 33 ± 2 | | 10 ⁶ | 0 | 10 ⁶ | 75 ± 6 | | 10 ⁶ | 9×10^{6} | 10 ⁷ | 71 ± 3 | | 107 | 0 | 107 | 97 ± 2 | Collagen-fibrin gels contained $10^6/ml$ of gel SIINFEKL-B16 cells, 10^4 , 10^5 , 10^6 , or $10^7/ml$ of gel in vitro-activated OT-1 cells, and, where indicated, a sufficient concentration of naive splenocytes from wild-type C57BL/6 mice to produce a final concentration of 10^7 lymphocytes/ml of gel. Gels were incubated at 37° C for 24 h, digested, and the number of clonogenic B16 cells remaining was assessed as described in Materials and methods. Data shown represent the mean percentage of B16 cells killed \pm SEM at 24 h for three experiments, each performed in duplicate. **Table S3.** OT-1 cell concentration determines the efficiency of killing of SIINFEKL-B16 cells | B16 cells | Packed volume | OT-1 cells | Packed volume | Spleno- cytes | Packed volumeP | acked volume | OT-1/ B16 | OT-1 cell | B16 cells | |-------------------|---------------|-----------------|---------------|---------------------|----------------|--------------|------------|---------------------|-----------| | added | B16 cells | added | OT-1 cells | added | spleno- cytes | all cells | cell ratio | concen- tration | killed | | | nl | | nl | | nl | | | | % | | 2×10^{4} | 49 | 10 ⁵ | 16 | 8.9×10^{5} | 198 | 263 nl | 5:1 | 2.4×10^{9} | \sim 18 | | 4×10^{4} | 99 | 10 ⁵ | 16 | 6.7×10^{5} | 148 | 263 nl | 2.5:1 | 2.4×10^{9} | \sim 18 | | 10 ⁵ | 247 | 10 ⁵ | 16 | 0 | 0 | 263 nl | 1:1 | 2.4×10^{9} | \sim 18 | B16 cells were pulsed with 1 μ M SIINFEKL as described in Materials and methods. JEM S3 **Table S4.** OT-1 cell killing of ova-B16 cells in 8-d-old tumors in vivo | Days after inoculation ^a | ova-B16
tumor
volume
(control
mice) ^b | ova-B16
cells per
tumor
(control
mice) ^{b,c} | OT-1 cells/g | | per tumor (OT- | ova-B16 cells in
tumors of OT-1 cell-
inoculated mice on the
day indicated/ova-B16
cells in tumors on day
0 | | k ml/OT-1
cell/min ^e | CTC (OT-1
cells/ml) = g/k | |-------------------------------------|--|---|--|-------|------------------------|--|--------------------------------------|---------------------------------------|------------------------------| | | mm³ | , | | mm³ | | | , | | | | 0 | 90.5 | 2.71×10^{7} | 0 | 90.5 | 2.71×10^{7} | day 0 = 1 | | | | | 3 | 615.4 | 1.84 × 10 ⁸ | days $0-3 = 3$
× 10^6 , mean
days $0-3 =$
1.5×10^6 | 299.6 | 8.99 × 10 ⁷ | day 3 = 3.32 | days $0-3$
= 4.4×10^{-4} | days $0-3$
= 1.1×10^{-10} | days $0-3 = 4 \times 10^6$ | | 5 | 1,267 | 3.8×10^{8} | day $5 = 5 \times 10^{6}$, mean
days $3-5 = 4 \times 10^{6}$ | 212.7 | 6.38×10^7 | day 5 = 2.35 | , | days $3-5 = 0.92 \times 10^{-10}$ | days $3-5 = 2.7 \times 10^6$ | | 7 | ~1,900 | 5.7 × 10 ⁸ | day $7 = 3 \times 10^6$, mean
days $5-7 = 4 \times 10^6$ | 149.5 | 4.48×10^7 | day 7 = 1.65 | days 5-7
= 1.4×10^{-4} | , | days $5-7 = 2.1 \times 10^6$ | ^aDays after i.p. inoculation of in vitro-activated OT-1 cells into mice bearing 8-d-old ova-B16 tumors. Table S5. Polyoma virus antigen-specific CD8+ T-cell killing of polyoma virus-infected splenocytes in mouse spleen in vivo. | Days after polyoma virus infection | Plaque forming
units polyoma virus
per mg spleen ^a | Number of polyoma
antigen-specific
CD8+ T cells per
spleen ^a | Intrasplenic
concentration of
polyoma antigen-
specific CD8+ T cells ^b | PFU polyoma virus/
mg spleen on the
day indicated/ PFU
on day 3c | k (ml/polyoma virus
antigen–specific
CD8+ T cell/min) ^d | CTC/ml ^e | |------------------------------------|---|--|--|---|--|----------------------| | 3 | 4.2×10^{3} | 1.7 × 10 ⁴ | 1.7 × 10 ⁵ | 1 | | | | 4 | 5.5×10^3 | Mean days $3-5 = 2.8 \times 10^5$ | Mean days $3-5 = 2.8$
× 10^6 | 1.31 | | | | 5 | 6.1×10^3 | 5.4×10^5 | 5.4×10^6 | 1.45 | days $4-5 = 2.13 \times 10^{-11}$ | 8.63×10^{6} | | 6 | 1.2×10^3 | Mean days $5-7 = 1.46 \times 10^6$ | Mean days $5-7 = 1.46$
× 10^7 | 0.29 | days $5-6 = 8.98 \times 10^{-11}$ | 2.05×10^6 | | 7 | 4.5×10^{2} | 2.39×10^{6} | 2.39 x 10 ⁷ | 0.11 | days $6-7 = 3.63 \times 10^{-11}$ | 5.07×10^6 | | 8 | 1.2×10^{1} | Mean days $7-9 = 2.46 \times 10^6$ | Mean days $7-9 = 2.46 \times 10^7$ | 0.003 | days $7-8 = 1.11 \times 10^{-11}$ | 1.66×10^6 | | 9 | 5.8 | 2.49×10^{6} | 2.49×10^7 | 0.001 | days $8-9 = 2.78 \times 10^{-11}$ | 6.62×10^6 | For all calculations, b_0 is 4.2×10^3 , the number of polyoma virus PFU/mg of spleen on day 3. ^bData from Petersen et al. (2006. *J. Immunother.* doi:10.1097/01.cji.0000203078.97493.c3). See also Agger et al. (2007. *J. Immunother.* doi:10.1097/01.cji.0000211326.38149.7e). ^cB16 cells/mm³ or /mg of wet weight of tumor = 3×10^5 (Stephens, T.C., and J.H. Peacock. 1978. *Br. J. Cancer.* 38:591–598.). $[^]dg$ = growth rate of ova-B16 cells calculated as in Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725) and in Materials and methods for days 0-3, 3-5, and 5-7, assuming 3 \times 10⁵ ova-B16 cells/mm³ tumor and tumor volume as reported in Fig. 4 of Petersen et al. (2006. *J. Immunother.* doi:10.1097/01.cji.0000203078.97493.c3). [«]Killing constant (k) calculated using Eq. 1 from Li et al. (2004. J. Exp. Med. doi:10.1084/jem.20040725) as described in Materials and methods. ^aData in this table is from Lukacher et al. (1999. *J. Immunol.* 163:3369–3378). $g = \ln b_l/b_0$ (5,500/4,200) divided by $1.44 \times 10^3 \min/d = 1.87 \times 10^{-4}/\min$. ^bCalculated assuming spleen vol = 0.1 ml. cCalculated from Fig. 2. in Lukacher et al. (1999. J. Immunol. 163:3369–3378) $^{^{}d}$ Calculated as in Li et al. (2002. *Proc. Natl. Acad. Sci. USA.* doi:10.1073/pnas.122244799) and Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725), $k = \text{ln } b_d/b_0$ divided by the sum of the intrasplenic concentration of polyoma virus antigen–specific CD8+T cells/ml \times time in minutes + $g \times$ time in minutes. k (mean) = 3.7×10^{-11} ml/polyoma virus antigen–specific CD8+T cell/min. $^{{}^{\}circ}$ CTC = g/k as in Li et al. (2002. *Proc. Natl. Acad. Sci. USA.* doi:10.1073/pnas.122244799) and Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725). CTC (mean) = 4.8×10^6 polyoma antigen–specific CD8+ T cells/ml.