SUPPLEMENTAL MATERIAL

Budhu et al., http://www.jem.org/cgi/content/full/jem.20091279/DC1

Figure S1. SIINFEKL peptide concentration required for optimal killing of B16 cells in collagen–fibrin gels. B16 cells were pulsed with the indicated concentrations of SIINFEKL peptide and coincubated at a concentration of $10^5/ml$ collagen–fibrin gel without or with 10^7 OT–1 cells/ml of gel at 37° C for 24 h. The gels were lysed and assayed for viable B16 cells. Data shown represent mean \pm SEM of n = 3 experiments performed in duplicate.

JEM S1

Figure S2. CMA inhibits OT–1 cell killing of SIINFEKL–B16 cells. Collagen-fibrin gels containing 10^5 SIINFEKL–B16 cells and 10^6 OT–1 cells/ml of gel were overlaid with 0.5 ml RPMI 1640 containing 10% FBS, 5×10^{-5} M β –ME, and the indicated concentration of CMA and incubated at 37° C for 24 h. The gels then were lysed and assayed for viable B16 cells as described in Materials and methods. Data shown represent mean \pm SEM of n=3 experiments performed in duplicate.

Figure S3. OT-1 cell killing of SIINFEKL-B16 cells in spheroids versus single SIINFEKL-B16 cells dissociated from these spheroids. Collagenfibrin gels containing 10⁶ OT-1 cells and 10³ SIINFEKL peptide-pulsed B16 spheroids or 10⁵ SIINFEKL-B16 cells dissociated from SIINFEKL peptide-pulsed spheroids were incubated in OT-1 growth medium at 37°C. At 24 and 48 h, gels were lysed and surviving B16 cells were assessed by colony formation as described in Fig. 1. Shown is the mean percentage of B16 cells killed ± SEM for three experiments, each performed in duplicate.

Table S1. Activated OT-1 cells kill growing and nongrowing SIINFEKL-pulsed B16 cells with approximately equal efficiency

OT-1 cells	10 ⁴ B16 cells/ml		10 ⁵ B1	6 cells/ml	10 ⁶ B16	Mean	
	Growing	Nongrowing	Growing	Nongrowing	Growing	Nongrowing	
	%	%	%	%	%	%	%
10 ⁴	9 ± 3	11 ± 3	14 ± 4	10 ± 4	14 ± 1	14 <u>+</u> 1	12 ± 2
10 ⁵	27 ± 7	26 ± 4	31 ± 5	30 ± 3	34 ± 4	31 ± 4	30 ± 3
10 ⁶	65 ± 6	64 ± 6	65 ± 1	61 ± 7	66 ± 6	61 <u>+</u> 6	62 ± 2
10 ⁷	98 ± 2	97 ± 1	99 ± 1	98 ± 1	98 ± 1	97 ± 1	98 ± 1

Killing efficiencies from Fig. 2 and unpublished data. Values represent the mean percentage of B16 killed ± SEM at t = 24 for three experiments performed in duplicate.

Table S2. Addition of naïve spleen cells had no effect on killing efficiency of OT-1 cells in collagen-fibrin gels

OT-1 cells/ml ⁻	Naive spleen cells/ml	Total lymphocytes/ml	B16 killed (± SEM)
			%
0	0	0	0
0	10 ⁷	10 ⁷	0
10 ⁴	0	104	18 ± 5
10 ⁴	9.99×10^{6}	10 ⁷	19 ± 3
10 ⁵	0	10 ⁵	35 ± 6
10 ⁵	9.9×10^{6}	10 ⁷	33 ± 2
10 ⁶	0	10 ⁶	75 ± 6
10 ⁶	9×10^{6}	10 ⁷	71 ± 3
107	0	107	97 ± 2

Collagen-fibrin gels contained $10^6/ml$ of gel SIINFEKL-B16 cells, 10^4 , 10^5 , 10^6 , or $10^7/ml$ of gel in vitro-activated OT-1 cells, and, where indicated, a sufficient concentration of naive splenocytes from wild-type C57BL/6 mice to produce a final concentration of 10^7 lymphocytes/ml of gel. Gels were incubated at 37° C for 24 h, digested, and the number of clonogenic B16 cells remaining was assessed as described in Materials and methods. Data shown represent the mean percentage of B16 cells killed \pm SEM at 24 h for three experiments, each performed in duplicate.

Table S3. OT-1 cell concentration determines the efficiency of killing of SIINFEKL-B16 cells

B16 cells	Packed volume	OT-1 cells	Packed volume	Spleno- cytes	Packed volumeP	acked volume	OT-1/ B16	OT-1 cell	B16 cells
added	B16 cells	added	OT-1 cells	added	spleno- cytes	all cells	cell ratio	concen- tration	killed
	nl		nl		nl				%
2×10^{4}	49	10 ⁵	16	8.9×10^{5}	198	263 nl	5:1	2.4×10^{9}	\sim 18
4×10^{4}	99	10 ⁵	16	6.7×10^{5}	148	263 nl	2.5:1	2.4×10^{9}	\sim 18
10 ⁵	247	10 ⁵	16	0	0	263 nl	1:1	2.4×10^{9}	\sim 18

B16 cells were pulsed with 1 μ M SIINFEKL as described in Materials and methods.

JEM S3

Table S4. OT-1 cell killing of ova-B16 cells in 8-d-old tumors in vivo

Days after inoculation ^a	ova-B16 tumor volume (control mice) ^b	ova-B16 cells per tumor (control mice) ^{b,c}	OT-1 cells/g		per tumor (OT-	ova-B16 cells in tumors of OT-1 cell- inoculated mice on the day indicated/ova-B16 cells in tumors on day 0		k ml/OT-1 cell/min ^e	CTC (OT-1 cells/ml) = g/k
	mm³	,		mm³			,		
0	90.5	2.71×10^{7}	0	90.5	2.71×10^{7}	day 0 = 1			
3	615.4	1.84 × 10 ⁸	days $0-3 = 3$ × 10^6 , mean days $0-3 =$ 1.5×10^6	299.6	8.99 × 10 ⁷	day 3 = 3.32	days $0-3$ = 4.4×10^{-4}	days $0-3$ = 1.1×10^{-10}	days $0-3 = 4 \times 10^6$
5	1,267	3.8×10^{8}	day $5 = 5 \times 10^{6}$, mean days $3-5 = 4 \times 10^{6}$	212.7	6.38×10^7	day 5 = 2.35	,	days $3-5 = 0.92 \times 10^{-10}$	days $3-5 = 2.7 \times 10^6$
7	~1,900	5.7 × 10 ⁸	day $7 = 3 \times 10^6$, mean days $5-7 = 4 \times 10^6$	149.5	4.48×10^7	day 7 = 1.65	days 5-7 = 1.4×10^{-4}	,	days $5-7 = 2.1 \times 10^6$

^aDays after i.p. inoculation of in vitro-activated OT-1 cells into mice bearing 8-d-old ova-B16 tumors.

Table S5. Polyoma virus antigen-specific CD8+ T-cell killing of polyoma virus-infected splenocytes in mouse spleen in vivo.

Days after polyoma virus infection	Plaque forming units polyoma virus per mg spleen ^a	Number of polyoma antigen-specific CD8+ T cells per spleen ^a	Intrasplenic concentration of polyoma antigen- specific CD8+ T cells ^b	PFU polyoma virus/ mg spleen on the day indicated/ PFU on day 3c	k (ml/polyoma virus antigen–specific CD8+ T cell/min) ^d	CTC/ml ^e
3	4.2×10^{3}	1.7 × 10 ⁴	1.7 × 10 ⁵	1		
4	5.5×10^3	Mean days $3-5 = 2.8 \times 10^5$	Mean days $3-5 = 2.8$ × 10^6	1.31		
5	6.1×10^3	5.4×10^5	5.4×10^6	1.45	days $4-5 = 2.13 \times 10^{-11}$	8.63×10^{6}
6	1.2×10^3	Mean days $5-7 = 1.46 \times 10^6$	Mean days $5-7 = 1.46$ × 10^7	0.29	days $5-6 = 8.98 \times 10^{-11}$	2.05×10^6
7	4.5×10^{2}	2.39×10^{6}	2.39 x 10 ⁷	0.11	days $6-7 = 3.63 \times 10^{-11}$	5.07×10^6
8	1.2×10^{1}	Mean days $7-9 = 2.46 \times 10^6$	Mean days $7-9 = 2.46 \times 10^7$	0.003	days $7-8 = 1.11 \times 10^{-11}$	1.66×10^6
9	5.8	2.49×10^{6}	2.49×10^7	0.001	days $8-9 = 2.78 \times 10^{-11}$	6.62×10^6

For all calculations, b_0 is 4.2×10^3 , the number of polyoma virus PFU/mg of spleen on day 3.

^bData from Petersen et al. (2006. *J. Immunother.* doi:10.1097/01.cji.0000203078.97493.c3). See also Agger et al. (2007. *J. Immunother.* doi:10.1097/01.cji.0000211326.38149.7e). ^cB16 cells/mm³ or /mg of wet weight of tumor = 3×10^5 (Stephens, T.C., and J.H. Peacock. 1978. *Br. J. Cancer.* 38:591–598.).

 $[^]dg$ = growth rate of ova-B16 cells calculated as in Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725) and in Materials and methods for days 0-3, 3-5, and 5-7, assuming 3 \times 10⁵ ova-B16 cells/mm³ tumor and tumor volume as reported in Fig. 4 of Petersen et al. (2006. *J. Immunother.* doi:10.1097/01.cji.0000203078.97493.c3).

[«]Killing constant (k) calculated using Eq. 1 from Li et al. (2004. J. Exp. Med. doi:10.1084/jem.20040725) as described in Materials and methods.

^aData in this table is from Lukacher et al. (1999. *J. Immunol.* 163:3369–3378). $g = \ln b_l/b_0$ (5,500/4,200) divided by $1.44 \times 10^3 \min/d = 1.87 \times 10^{-4}/\min$.

^bCalculated assuming spleen vol = 0.1 ml.

cCalculated from Fig. 2. in Lukacher et al. (1999. J. Immunol. 163:3369–3378)

 $^{^{}d}$ Calculated as in Li et al. (2002. *Proc. Natl. Acad. Sci. USA.* doi:10.1073/pnas.122244799) and Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725), $k = \text{ln } b_d/b_0$ divided by the sum of the intrasplenic concentration of polyoma virus antigen–specific CD8+T cells/ml \times time in minutes + $g \times$ time in minutes. k (mean) = 3.7×10^{-11} ml/polyoma virus antigen–specific CD8+T cell/min.

 $^{{}^{\}circ}$ CTC = g/k as in Li et al. (2002. *Proc. Natl. Acad. Sci. USA.* doi:10.1073/pnas.122244799) and Li et al. (2004. *J. Exp. Med.* doi:10.1084/jem.20040725). CTC (mean) = 4.8×10^6 polyoma antigen–specific CD8+ T cells/ml.