Sekiguchi et al. http://www.jem.org/cgi/doi/10.1084/jem.20020737

Supplemental Tables

Table S1. L Chain Usage in 3H9.KI Hybridomas after cGVH Induction

	$dsDNA^+$		dsDNA-	
	$3H9tg^{+} = 17$	$3H9tg^{-} = 9$	$3H9tg^{+} = 3$	$3H9tg^{-} = 9$
L chain usage				
κ 1	1 (6%)	1 (11%)	0	4 (44%)
[κ2	3 (17%)	2 (22%)	1 (33%)	0
κ 4	0	1 (11%)	0	1 (11%)
ι κ5	7 (41%)	2 (22%)	0	3 (33%)
\1	5 (29%)	0	0	1 (11%)
Λx				
Vк38c	1 (5%) ^a	0	1 (33%)	0
Vκ32a	2 (11%) ^a	0	0	1 (11%) ^a

Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in hybridomas from the bm12 \rightarrow 3H9(+) mouse. The high percentage of J κ 5 (41%) and λ usage (29%) found in dsDNA⁺3H9tg⁺ clones differs significantly from those expected for J κ 5 and λ (P \leq 0.05) usage (some of the 3H9.KI results have been already been published in reference 20 [listed in main text of article]).

Table S2. L Chain Usage in 3H9/56R.KI IgM Hybridomas after cGVH Induction

	$dsDNA^+$		dsDNA-	
	$56Rtg^+ = 16$	$56Rtg^{-} = 2$	$56Rtg^+ = 2$	$56Rtg^{-} = 2$
L chain usage				
Jκ1	1 (6%)	0	1 (50%)	0
Jκ2	0	0	1 (50%)	1 (50%)
Jκ4	2 (12.5%)	1 (50%)	0	1 (50%)
Jĸ5	5 (31.5%)	0	0	0
λ1	1 (10%) ^a	0	0	1 (50%)
λx	0	0	0	0
Vκ38c	10 (62%)	0	0	0
J1	1 (10%)			
J2	2 (20%)			
J4	6 (60%) ^a			
J5	1 (10%)			
Vк32a	1 (6%) ^a	1 (50%) ^a	1 (50%) ^a	0

Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in IgM hybridomas from the bm12 \rightarrow 56R(+) mouse. ^aRepresents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]).

 $^{^{}a}$ Represents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]).

Table S3. L Chain Usage in 3H9/56R.KI IgG Hybridomas after cGVH Induction

	$dsDNA^+$		dsDNA ⁻	
	$56Rtg^+ = 0$	$56Rtg^{-} = 38$	$56Rtg^+ = 0$	$56Rtg^{-} = 18$
L chain usage				
κ1		6 (16%)		0
κ2		11 (29%)		3 (17%)
κ4		8 (21%)		3 (17%)
κ5		3 (7%)		3 (17%)
.1		1 (2%)		0
X		0		0
√ κ 38c		0		3 (17%)
V к 32a		2 (5%) ^a		3 (17%) ^a

Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in IgG hybridomas from the $bm12 \rightarrow 56R(+)$ mouse. None of these clones show an L chain bias.

 $[^]a$ Represents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]).