Sekiguchi et al. http://www.jem.org/cgi/doi/10.1084/jem.20020737 ## Supplemental Tables **Table S1.** L Chain Usage in 3H9.KI Hybridomas after cGVH Induction | | $dsDNA^+$ | | dsDNA- | | |---------------|----------------------|-----------------|-----------------|----------------------| | | $3H9tg^{+} = 17$ | $3H9tg^{-} = 9$ | $3H9tg^{+} = 3$ | $3H9tg^{-} = 9$ | | L chain usage | | | | | | κ 1 | 1 (6%) | 1 (11%) | 0 | 4 (44%) | | [κ2 | 3 (17%) | 2 (22%) | 1 (33%) | 0 | | κ 4 | 0 | 1 (11%) | 0 | 1 (11%) | | ι κ5 | 7 (41%) | 2 (22%) | 0 | 3 (33%) | | \1 | 5 (29%) | 0 | 0 | 1 (11%) | | Λx | | | | | | Vк38c | 1 (5%) ^a | 0 | 1 (33%) | 0 | | Vκ32a | 2 (11%) ^a | 0 | 0 | 1 (11%) ^a | Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in hybridomas from the bm12 \rightarrow 3H9(+) mouse. The high percentage of J κ 5 (41%) and λ usage (29%) found in dsDNA⁺3H9tg⁺ clones differs significantly from those expected for J κ 5 and λ (P \leq 0.05) usage (some of the 3H9.KI results have been already been published in reference 20 [listed in main text of article]). **Table S2.** L Chain Usage in 3H9/56R.KI IgM Hybridomas after cGVH Induction | | $dsDNA^+$ | | dsDNA- | | |---------------|----------------------|----------------------|----------------------|-----------------| | | $56Rtg^+ = 16$ | $56Rtg^{-} = 2$ | $56Rtg^+ = 2$ | $56Rtg^{-} = 2$ | | L chain usage | | | | | | Jκ1 | 1 (6%) | 0 | 1 (50%) | 0 | | Jκ2 | 0 | 0 | 1 (50%) | 1 (50%) | | Jκ4 | 2 (12.5%) | 1 (50%) | 0 | 1 (50%) | | Jĸ5 | 5 (31.5%) | 0 | 0 | 0 | | λ1 | 1 (10%) ^a | 0 | 0 | 1 (50%) | | λx | 0 | 0 | 0 | 0 | | Vκ38c | 10 (62%) | 0 | 0 | 0 | | J1 | 1 (10%) | | | | | J2 | 2 (20%) | | | | | J4 | 6 (60%) ^a | | | | | J5 | 1 (10%) | | | | | Vк32a | 1 (6%) ^a | 1 (50%) ^a | 1 (50%) ^a | 0 | Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in IgM hybridomas from the bm12 \rightarrow 56R(+) mouse. ^aRepresents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]). $^{^{}a}$ Represents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]). **Table S3.** L Chain Usage in 3H9/56R.KI IgG Hybridomas after cGVH Induction | | $dsDNA^+$ | | dsDNA ⁻ | | |----------------|---------------|---------------------|--------------------|----------------------| | | $56Rtg^+ = 0$ | $56Rtg^{-} = 38$ | $56Rtg^+ = 0$ | $56Rtg^{-} = 18$ | | L chain usage | | | | | | κ1 | | 6 (16%) | | 0 | | κ2 | | 11 (29%) | | 3 (17%) | | κ4 | | 8 (21%) | | 3 (17%) | | κ5 | | 3 (7%) | | 3 (17%) | | .1 | | 1 (2%) | | 0 | | X | | 0 | | 0 | | √ κ 38c | | 0 | | 3 (17%) | | V к 32a | | 2 (5%) ^a | | 3 (17%) ^a | Analysis of the same monoclonal hybridomas shown in Table I. L chain rearrangement in IgG hybridomas from the $bm12 \rightarrow 56R(+)$ mouse. None of these clones show an L chain bias. $[^]a$ Represents dual L chain rearrangement. The κ and λ PCR assays were described previously (references 6, 18, 23, and 25 [listed in main text of article]).