Contents:
The Journal of Cell Biology
Volume 134, Number 5, September 1996

1097 Topoisomerase II α is associated with the mammalian centromere in a cell cycle- and species-specific manner and is required for proper centromere/kinetochore structure.
J.B. Rattner, M.J. Hendzel, C.S. Furbee, M.T. Muller, and D.P. Bazett-Jones

1109 Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing.
H. Scherthan, S. Weich, H. Schwegler, C. Heyting, M. Härle, and T. Cremer

1127 Bipolar spindle attachments affect redistributions of ZW10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation.
B.C. Williams, M. Gatti, and M.L. Goldberg

1141 Targeting and function in mRNA export of nuclear pore complex protein Nup153.
R. Bastos, A. Lin, M. Enarson, and B. Burke

1157 A nuclear export signal is essential for the cytosolic localization of the ran binding protein, RanBP1.
S.A. Richards, K.M. Lounsbury, K.L. Carey, and I.G. Macara

1169 Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells.
E.J. Smart, C. Mineo, and R.G.W. Anderson

1179 Two muscle-specific LIM proteins in Drosophila.
B.E. Stronach, S.E. Siegrist, and M.C. Beckerle

1187 Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone.
A.M. Sydor, A.L. Su, F.-S. Wang, A. Xu, and D.G. Jay

1197 Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body.
K.I. Anderson, Y.-L. Wang, and J.V. Small

1209 Synaptic vesicle recycling in synapsin I knock-out mice.
T.A. Ryan, L. Li, L.-S. Chin, P. Greengard, and S.J. Smith

1219 Targeting of P-selectin to two regulated secretory organelles in PC12 cells.
J.P. Norcott, R. Solari, and D.F. Cutler

1241 Accumulation in fetal muscle and localization to the neuromuscular junction of cAMP-dependent protein kinase A regulatory and catalytic subunits RIα and Ca.
T. Imaizumi-Scherrer, D.M. Faust, J.-C. Bénichou, R. Helliou, and M.C. Weiss

1255 Disruption of muscle architecture and myocardial degeneration in mice lacking desmin.
D.J. Milner, G. Weitzel, D. Tran, A. Bradley, and Y. Capetanaki

1271 β-Catenin associates with the actin-bundling protein fascin in a nonadherin complex.
Y.S. Tao, R.A. Edwards, B. Tubb, S. Wang, J. Bryan, and P.D. McCrea

1283 An in vivo structure-function study of armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling.
S. Orsulic and M. Peifer

1301 PDGF induction of α1 integrin gene expression is mediated by protein kinase C-ζ.
J. Xu, M.M. Zutter, S.A. Santoro, and R.A.F. Clark

1313 Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding.
F.P. Lindberg, H.D. Gresham, M.I. Reinhold, and E.J. Brown

1323 Protein kinase C regulates αvβ5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation.
J.M. Lewis, D.A. Cheresh, and M.A. Schwartz

A potent far-upstream enhancer in the mouse Proα2(I) collagen gene regulates expression of reporter genes in transgenic mice.

Cover picture: Nuclear localization of Armadillo is dependent on Wingless signaling. Shown is Drosophila embryo at stage nine, when Wingless signaling is active in segmentally reiterated stripes of cells. Cells that receive the Wingless signal show nuclear localization of Armadillo. This nuclear localization is more prominent in Armadillo mutants that cannot assemble into the adherens junction complex. See related article in this issue by Orsulic and Peifer, 1283-1300.