Supplemental material

Mason et al., https://doi.org/10.1083/jcb. 201806065

Figure S1. YAP and TAZ nuclear localization are sensitive to rigidity in ECFCs. ECFCs were seeded at 8.5×10^{3} cells per cm^{2} on collagen-coated soft or stiff PA or glass for 24 h and then fixed and stained for YAP (not shown) and TAZ. (A) Representative images actin, TAZ, and nuclei visualized with Alexa Fluor 488and 594-conjugated phalloidin and secondary and DAPI, respectively. (B and C) Individual cell area (B) and circularity (C) as a function of substrate elastic modulus. (D) Cumulative counts of YAP or TAZ subcellular localization based on qualitative assessment; $n=150$; $P<0.0001$; X^{2} test. (E) Representative immunofluorescent images of YAP localization visualized by Alexa Fluor 594-conjugated secondary and DAPI subdivided into $100-\mu \mathrm{m}$ ROIs. Repeated significance indicator letters (e.g., a-a) signify $P>0.05$, while groups with distinct indicators (avs. b; ${ }^{*}$) signify $P<0.05$. Summary statistics are represented as mean \pm SEM. Box plots show interquartile range with whiskers at minimum/maximum.

Figure S2. Reconstitution of YAP/TAZ-dependent angiocrines CTGF, Cyr61, or SERPINE1 does not rescue ECFC migration. Confluent ECFCs were scratched and lysate collected for gene expression 0,1 , and 12 h after initiation of migration. (\mathbf{A} and \mathbf{B}) YAP (A) and TAZ mRNA (B) expression in migrating ECFCs depleted of YAP and TAZ; $n=4$. (C and D) YAP (C) and TAZ protein (D) expression after depletion with siRNAs 1 and 2 . (\mathbf{E}) Wound closure rate of confluent ECFCs imaged over 12 h after depletion of YAP and TAZ with siRNA $2 ; n=34 ; \mathrm{P}<0.01$; ANOVA with Tukey's post hoc test. (F) CTGF and Cyr61 gene expression after treatment with sphingosine-1-phosphate for 1 h followed by lysis and RNA collection for RT-qPCR. $n=2$ independent experiments; $P<0.01$; ANOVA with Tukey's post hoc test. (G) Wound closure rate of cells treated with 50 and $100 \mathrm{ng} / \mathrm{ml}$ of CTGF and/or Cyr61. Groups treated with 50 or $100 \mathrm{ng} / \mathrm{ml}$ were combined for analysis, as there were no differences in wound closure between those treatments; $n=7-8 ; P<0.0001$; ANOVA with Tukey's post hoc test. Migrating ECFCs were lysed at 0,1 , and 12 h after the initiation of migration and lysate use for RT-qPCR. (H) SERPINE1 gene expression during migration. $n=$ 2 independent experiments. (I) Wound closure rate after treatment with 50 or $100 \mathrm{ng} / \mathrm{ml}$ of SERPINE1. Groups treated with 50 or $100 \mathrm{ng} / \mathrm{ml}$ were combined for analysis, as there were no differences in wound closure between those treatments; $n=4-8 ; P<0.0001$; ANOVA with Tukey's post hoc test. (J) ECFCs were pretreated with $20 \mu \mathrm{~g} / \mathrm{ml}$ mito C during serum starvation, before initiation of cell migration. Wound closure rate ($\mu \mathrm{m} / \mathrm{min}$) was measured after 8 h ; $\mathrm{n}=12$; $\mathrm{P}<$ 0.02; ANOVA with Tukey's post hoc test.

E
siControl
siYAP/TAZ

Figure S3. YAP and TAZ depletion affects cytoskeletal and FA morphology by myosin activation and possibly by FAK localization. Confluent ECFCs were scratched and allowed to migrate for 8 h then fixed for morphological analysis. (A and B) Cell area (A), $\mathrm{P}<0.004$, and circularity (B), $\mathrm{P}<0.0001 ; n=45$; ANOVA with Tukey's post hoc test. (C) Average vinculin ${ }^{+}$FA length from data described in Fig. $6 \mathrm{C} ; n=33-35 ; \mathrm{P}<0.007$; ANOVA with Tukey's post hoc test. (D) Migrating ECFCs were fixed for immunofluorescence. FAK, pFAK, actin, and nuclei were visualized with Alexa Fluor 594-conjugated secondary, Alexa Fluor 488-conjugated phalloidin, and DAPI, respectively. (E) Vinculin and actin in migrating ECFCs visualized by Alexa Fluor 594-conjugated secondary and 488-conjugated phalloidin after treatment with ROCK inhibitor Y-27632 (10 $\mu \mathrm{M}$) or Myosin II inhibitor Blebbistatin ($20 \mu \mathrm{M}$).

Figure S4. NUAK2 inhibition with WZ4003 partially restores cytoskeletal defects in actin polymerization and F morphology but not migration in YAPR/TAZ-depleted cells. Migrating ECFCs were depleted of YAP/TAZ and treated with $3 \mu M$ WZ4003, the NUAK2 inhibitor, for 8 h and then fixed for immunofluorescence. (A) Representative images of F- and G-actin visualized with Alexa Fluor 594-conjugated phalloidin and Alexa Fluor 488-conjugated DNase I. (B) F-actin fraction measured as phalloidin/DNase I intensity; P < 0.04; ANOVA with Tukey's post hoc test. (C) Representative images of vinculin and paxillin visualized with Alexa Fluor 594- and 488-conjugated secondary in QZ4003-treated cells. (D) Confluent ECFCs were scratched and imaged over 12 h and wound closure rate quantified. $n=5-8 ; \mathrm{P}<0.0001$; ANOVA with Tukey's post hoc test. Efficiency of YAP and TAZ depletion is unaffected by codepletion with NUAK2, in addition to YAP and TAZ. (E-G) YAP, TAZ, and NUAK2 mRNA expression relative to GAPDH measured by RT-qPCR after triple depletion of all three mRNA by siRNA; P < 0.0001; ANOVA with Tukey's post hoc test. (H and I) Western blot of TAZ expression after depletion of YAP, TAZ, and NUAK2 normalized to total protein; $P<0.0001$; ANOVA with Tukey's post hoc test. Repeated significance indicator letters (e.g., a-a) signify $P>0.05$, while groups with distinct indicators (a vs. b) signify $\mathrm{P}<0.05$.

Figure S5. Inhibition of the YAP/TAZ-TEAD interaction with VP phenocopies the cytoskeletal defects observed in YAP- and TAZ-depleted cells. Migrating ECFCs were treated with $2 \mu \mathrm{MVP}$, the YAP/TAZ-TEAD interaction inhibitor, for 8 h then fixed for immunofluorescence or gene expression by RTqPCR. (A) YAP and TAZ mRNA expression and YAP/TAZ target gene mRNA expression NUAK2, CTGF, Cyr61, and SERPINE1, measured relative to GAPDH by RTqPCR; P < 0.001; two-tailed Student's unpaired t test. (B) Representative images of F-and G-actin visualized with Alexa Fluor 594-conjugated phalloidin and Alexa Fluor 488-conjugated DNase I. (C) Normalized F- and G-actin intensity ($\mathrm{P}>0.11$) and F-/G-actin ratio per cell, normalized to DMSO-treated controls. $\mathrm{n}=$ 30 cells; $P<0.0001$; two-tailed Student's unpaired t test. n.s., not significant. (D) Cells were treated as described above and then Triton-extracted concurrent with fixation for immunofluorescence and analysis of structural FAs. Representative images of vinculin and paxillin visualized with Alexa Fluor 594- and 488 -conjugated secondary, respectively. Significance indicator $\left(^{*}\right.$) signifies $P>0.05$.

Video 1. Live imaging of collective migration. siControl (EGFP, left)- and siYAP/TAZ (mTomato, right)-treated ECFCs were seeded to confluence on collagen-coated plastic for 2 h in a custom polydimethylsiloxane stencil. Collective cell migration was tracked for 10 h in $15-\mathrm{min}$ intervals.

Video 2. YAP/TAZ-depleted cell paracrine signaling has limited effect on control cell migration in a monolayer. siControl (EGFP) were seeded 1:100 with siYAP/TAZ (mTomato)-treated ECFCs on collagen-coated plastic. Random migration in a confluent monolayer was tracked for 10 h in 15-min intervals.

Video 3. Control cell paracrine signaling does not rescue YAP/TAZ-depleted cell migration in a monolayer. siYAP/TAZ (mTomato, right) were seeded 1:100 with siControl (EGFP)-treated ECFCs on collagen-coated plastic. Random migration in a confluent monolayer was tracked for 10 h in 15 -min intervals.

Video 4. Control ECFCs have distinct lamellipodial protrusions. Detailed phase contrast video of siControl-treated cell migration tracked for 10 min in $10-\mathrm{s}$ intervals. Time is in min:s.

Video 5. YAP/TAZ depletion causes significant membrane retraction. Detailed phase contrast video of YAP/TAZ-depleted cell migration tracked for 10 min in $10-\mathrm{s}$ intervals. Time is in min:s.

