Supplemental material **JCB** Smith et al., http://www.jcb.org/cgi/content/full/jcb.201503135/DC1 Figure S1. **REF strain characterization.** (A) Comparison of PP7-CP-3xYFP localization in a strain with no PP7 stem loops (BMY642) and the *REF* strain with *GFA* 1-24xPP7 at 26°C. The data shown are from a single representative experiment out of three repeats. (C) Dot plot shows the number of *GFA* 1 mRNAs per cell observed using single-molecule FISH probes against GFA1 in a strain with no PP7 stem loops (BMY642) and the *REF* strain at 26°C, with the mean denoted by a black line (n = 100 cells). (D) Selected nonconsecutive frames showing the splitting and merging of cytoplasmic particles in a *REF* cell (see Video 1) with the time from the start of the event given in the bottom right of each image in milliseconds. Bars, 1 μ m. Figure S2. mex67-5 strain characterization. (A) Growth curves of control (BMY129) and mex67-5 (BMY135) strains at 26°C. The data shown are from a single representative experiment out of five repeats. (B) Representative images showing poly(A)-RNA localization in the REF and mex67-5 strains at 26°C and 37°C. FISH was performed using a FITC-labeled oligo-(dT) probe, and DNA was stained with DAPI. (C) GFP-tagged Mex67 localization in control (KWY5566) and mex67-5 (KWY5567) strains at 26°C and 37°C as compared with Ndc1-tdTomato. Overlay displays the green and red channels as well as the bright field image. (D) Dot plot shows the number of GFA1 mRNAs per cell in logarithmically growing REF (14 \pm 6) and mex67-5 (12 \pm 5) strains at 26°C determined by single-molecule FISH with the mean denoted by a black line (n = 100 cells). Bars, 1 μ m. Video 1. **GFA1 mRNP observed to split and merge.** Video shows a cytoplasmic *GFA1* mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) in *REF* cells. The particle splits and merges, suggesting that multiple *GFA1* mRNAs can assembly together. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. S1 D were taken from this event. Video 2. Successful GFA1 mRNP export event in REF cells. Video shows an example of a successful export event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green). NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 2 A were taken from this event. Video 3. Successful GFA1 mRNP export event in REF cells. Video shows an example of a successful export event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green). NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Video 4. Successful GFA1 mRNP export event in REF cells. Video shows an example of a successful export event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green). NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Video 5. **Local NE scanning.** Video shows an example of a *GFA1* mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) docking with the same local area of the NE. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 2 B were taken from this event. Video 6. **Distributive NE scanning.** Video shows an example of a *GFA1* mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) docking with the NE distributed over a large area. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 2 C were taken from this event. Video 7. **Extended mRNP interactions with the NE in** mex67-5. Video shows two GFA1 mRNPs with 24xPP7 loops in the 3′ UTR bound by PP7-CP-3xYFP (green) engaged with the NE that persists for the entire length of the 7.5-s video in a mex67-5 cell. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 3 B were taken from this event. Video 8. Successful GFA1 mRNP export event in mex67-5 cells. Video shows an example of a successful export event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) from the nucleus to the cytoplasm. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 4 A were taken from this event. Video 9. Successful GFA1 mRNP export event in mex67-5 cells. Video shows an example of a successful export event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) from the nucleus to the cytoplasm. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Video 10. Failed mRNP export in a mex67-5 cell. Video shows a retrograde transport event based on tracking of a GFA1 mRNP with 24xPP7 loops in the 3' UTR bound by PP7-CP-3xYFP (green) from the cytoplasmic side of the NE back to the nucleus. NPCs are marked by Ndc1-tdTomato (red). Images were acquired using a custom dual channel setup (see Materials and methods section Live cell imaging of mRNP export and image processing) at a frame rate of 67 Hz, equaling a time resolution of 15 ms. Video is provided at a 5x reduced rate (13 Hz). Image processing for visual analysis was performed using Fiji. Data for Fig. 4 C were taken from this event. Table S1. Summary of dwell time analysis for successful mRNP export events | | REF (n = 43) | mex67-5 (n = 9) | |---|----------------|-----------------| | Mean export time—dwell time analysis | 188 ± 27 | ND | | Mean export time—MLE | 215 ± 33 | ND | | Mean nuclear docking time during export—dwell time analysis | 32 ± 5 | 362 ± 121 | | Mean nuclear docking time during export—MLE | 39 ± 6 | 202 ± 67 | | Mean transition time during export—dwell time analysis | 87 ± 13 | 406 ± 135 | | Mean transition time during export—MLE | 99 ± 15 | 383 ± 128 | | Mean cytoplasmic docking time during export—dwell time analysis | 62 ± 10 | 1,258 ± 419 | | Mean cytoplasmic docking time during export—MLE | <i>77</i> ± 12 | 943 ± 314 | All times reported in milliseconds. Reported errors are the SEM. Table S2. Yeast strains used in this study | Name | Genotype | Reference | |---------|---|------------------------| | BMY008 | BY4743 (MATa/Matα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0) | Brachmann et al., 1998 | | BMY083 | BY4743 (MATa/Matα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0)
GFA1-24xPP7/GFA1-24xPP7 NDC1-tdTomato::KanMX/NDC1-tdTomato::KanMX + [pBM242] | This study | | BMY129 | BY4743 (MATa/Matα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0) NAT
MX::DBP5/NATMX::DBP5 GFA1-24xPP7/GFA1-24xPP7 NDC1-tdTomato::KanMX/NDC1-tdTomato::KanMX +
[pBM242]) | This study | | BMY135 | BY4743 (MATa/Matα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0)
mex67-5::NATMX/mex67-5::NATMX GFA1-24xPP7/GFA1-24xPP7 NDC1-tdTomato::KanMX/
NDC1-tdTomato::KanMX + [pBM242]) | This study | | BMY642 | BY4743 (MATa/Matα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0)
NDC1-tdTomato::KanMX/NDC1-tdTomato::KanMX + [pBM242] | This study | | KWY5566 | BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) MEX67-EGFP::HIS3MX GFA1-24xPP7 NDC1-tdTomato::KanMX | This study | | KWY5567 | BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) mex67-5EGFP::HIS3MX GFA1-24xPP7 NDC1-tdTomato::KanMX | This study | Table S3. Plasmids used in this study | Name | Description | Reference | |--------|---|-----------------------| | pKT178 | pFA6a-link-tdimer2-KanMX (integrative plasmid, SP6 promoter for C-terminal tdimer2 protein fusion with KanMX-based selection) | Sheff and Thorn, 2004 | | pBM242 | pRS313-P _{MET} PP7-CP-3xYFP (HIS3 CEN plasmid, MET17 promoter for PP7-CP-3xYFP expression) | This study | | pDZ417 | pDZ417-24xPP7-loxP-KanMX-loxP (integrative plasmid, T7 promoter for 24xPP7-loxP-KanMX-loxP cassette integration) | Hocine et al., 2013 | | pYM28 | pFA6-yEGFP-HIS3MX (integrative plasmid, SP6 promoter for C-terminal yEFG protein fusion with
HIS3MX-based selection) | Janke et al., 2004 | | pSH47 | pRS416-GAL1-Cre (URA3 CEN plasmid, GAL1 promoter for Cre recombinase expression) | Güldener et al., 1996 | ## References - Brachmann, C.B., A. Davies, G.J. Cost, E. Caputo, J. Li, P. Hieter, and J.D. Boeke. 1998. Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast.* 14:115–132. http://dx.doi.org/10.1002/(SICI)1097 -0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 - Güldener, U., S. Heck, T. Fielder, J. Beinhauer, and J.H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. *Nucleic Acids Res.* 24:2519–2524. http://dx.doi.org/10.1093/nar/24.13.2519 - Hocine, S., P. Raymond, D. Zenklusen, J.A. Chao, and R.H. Singer. 2013. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. *Nat. Methods.* 10:119–121. http://dx.doi.org/10.1038/nmeth.2305 - Janke, C., M.M. Magiera, N. Rathfelder, C. Taxis, S. Reber, H. Maekawa, A. Moreno-Borchart, G. Doenges, E. Schwob, E. Schiebel, and M. Knop. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 21:947–962. http://dx.doi.org/10.1002/yea.1142 - Sheff, M.A., and K.S. Thorn. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 21:661–670. http://dx.doi.org/10.1002/yea.1130