Supplemental material

JCB

Coon et al., http://www.jcb.org/cgi/content/full/jcb.201408103/DC1

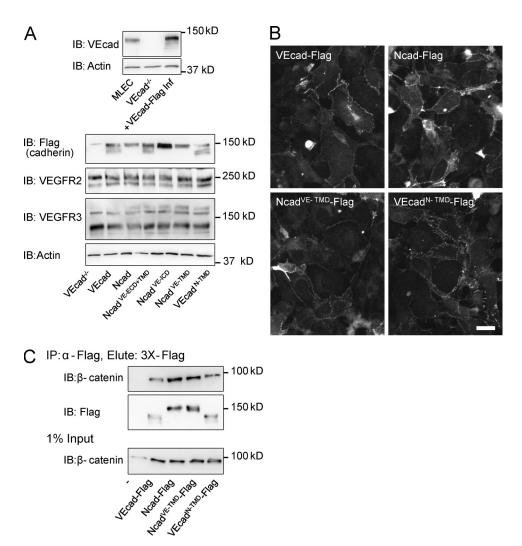


Figure S1. **Expression and localization of cadherins.** (A) MLEC and VEcad $^{-/-}$, WT, and chimeric cadherin-expressing cells were extracted and immunoblotted with the indicated antibodies. (B) VEcad $^{-/-}$ cells were infected with the indicated cadherin constructs using lentiviral vectors and sorted for equal cadherin expression. Cadherins were localized by staining with anti-Flag. Bar, 10 µm. (C) VEcad $^{-/-}$, WT, and chimeric cadherin-expressing cells were lysed, immunoprecipitated for Flag, and eluted with 3×-Flag peptide. Eluates were analyzed by SDS-PAGE and immunoblotting for Flag and β -catenin. IB, immunoblotting.

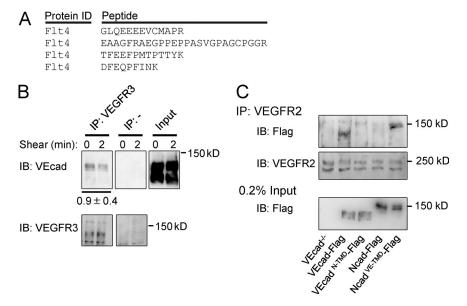


Figure S2. The effect of shear stress and VEGFR homologue on the VEcad-VEGFR complex. (A) VEGFR3 peptides within an Ncad^{VE-TMD}-Flag immunoprecipitation identified by mass spectrometry. (B) VEcad^{-/-} and VEcad^{WT} cells were either left under static conditions or exposed to 12 dynes/cm² laminar shear for 2 min before collecting lysates and immunoprecipitating VEGFR3. Eluted protein was analyzed by SDS-PAGE and immunoblotting for VEcad and VEGFR3. Blots are representative of three independent experiments. (C) VEcad^{-/-} and the indicated cadherin-reconstituted cells were lysed and immunoprecipitated with anti-VEGFR2 conjugated resin. Beads were washed and eluted protein was analyzed by SDS-PAGE and immunoblotting for Flag and VEGFR2. Blots are representative of two independent experiments. IB, immunoblotting; IP, immunoprecipitation.

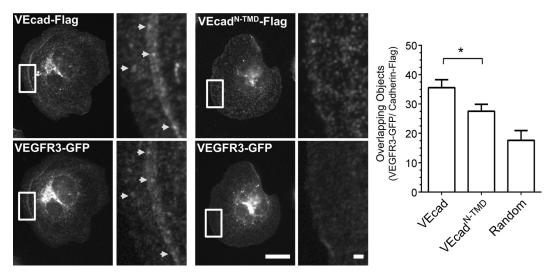


Figure S3. **TMD-dependent colocalization of VEcad with VEGFR3.** VEcad^{WT} and VEcad^{N-TMD} cells were infected with VEGFR3-GFP adenovirus. Cells were resuspended with accutase and plated onto glass slides precoated with recombinant Fc-VE^{ECD}. Cells were fixed at 2 h, immunostained for the Flag-tagged cadherins, and visualized by fluorescence microscopy. The boxed regions are enlarged in the panels to their immediate right. Bars: (left) 10 μ m; (right) 1 μ m. Fluorescent objects were thresholded and analyzed for colocalization according to their center of mass by the ImageJ JACoP plugin. Data are means \pm SEM (error bars), n = 15 cells. *, P < 0.05 using a t test.

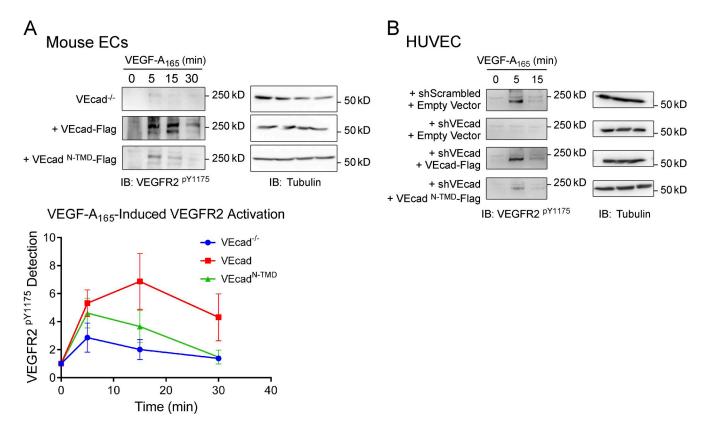


Figure S4. Influence of the VE-cad TMD on VEGF-A165-mediated VEGFR2 activation. (A) VEcad $^{-/-}$, VEcad WT , and VEcad NTMD cells were stimulated with 50 µg/ml VEGF-A165 for the indicated times. Lysates were collected and analyzed by SDS-PAGE and immunoblotting for VEGFR2 pY1175 and actin. VEGFR2 activation was quantified by densitometry of the \sim 250/220 kD doublet. Values are means \pm SEM (error bars) from three independent experiments. (B) HUVECs were infected with scrambled of VEcad shRNA lentivirus before infecting with empty vector, mouse VEcad, or mouse VEcad NTMD . Cells were stimulated with VEGF-A165 for 0, 5, or 15 min before collecting lysates and immunoblotting for VEGFR2 pY1175 .

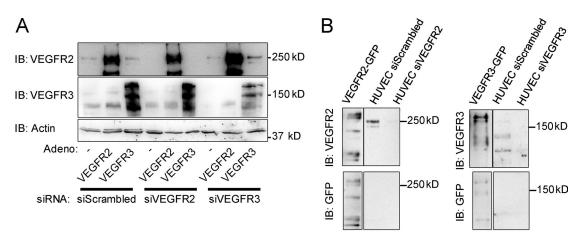


Figure S5. **Exagenous and endogenous VEGFR expression levels.** (A) HUVECs were infected with adenovirus encoding mCherry or VEGFR-GFP as in Fig. 6. Infection efficiency ranged from 60 to 90%. Lysates were blotted for VEGFR2 and VEGFR3 antibodies to compare the levels of endogenous and exagenous VEGFR-GFP expression. (B) 239T cells were transfected with either human VEGFR2-GFP- or human VEGFR3-GFP-expressing plasmids. HUVECs were also treated with the indicated siRNAs. Lysates were collected and immunoblotted for GFP (reference antibody), anti-VEGFR2, and anti-VEGFR3. Densitometry of the three signals reveals that the ratio of endogenous VEGFR2/VEGFR3 is between 75:25 and 60:40. IB, immunoblotting.