

Figure S 1. Analysis of MIT-MIM interaction. (A) Immunoprecipitation of Vps4-HA from cell lysates of vps20*, vps24* and vps24*, vps2* double mutants. (A and C) Immunoprecipitates were separated by SDS-PAGE and analyzed by Western blotting using the indicated antibodies. (B) Vps4-HA immunoprecipitates from WT cell lysates (labeled with [${ }^{13} \mathrm{C}_{6} /{ }^{15} \mathrm{~N}_{2}$] L-lysine) and from vps2* cell lysates were mixed and subjected to SDS-PAGE and Coomassie staining. The indicated bands (dotted boxes) were excised, digested with LysC, and analyzed by mass spectrometry. (C) Immunoprecipitation (IP) of Vps4-HA, Vps4-E233Q-HA, and the respective MIT mutants from cell lysates. (D) Semi-in vitro disassembly assay with membrane fractions isolated from vps 4Δ mutants. Membrane fractions were incubated with ATP and the indicated concentrations of recombinant Vps4, Vps4-I18D, or Vps5-L64D for 5 min . Membrane-associated proteins ($13,000 \mathrm{~g}$ pellet $[\mathrm{P}]$) and released proteins ($13,000 \mathrm{~g}$ supernatant $[\mathrm{S}]$) were separated by centrifugation and analyzed by SDS-PAGE and Western blotting. (E) Live-cell fluorescence microscopy of the indicated strains expressing GFP-CPS. DIC, differential interference contrast; IN, input; V, vacuole. Bar, $5 \mu \mathrm{M}$.

Figure S2. Characterization of chimeric ESCRT-III complexes. (A) Membrane fractions (M) and cytoplasmic fractions (C) of WT cells and the indicated mutants were analyzed by SDS-PAGE and Western blotting. (B) Solubilized membrane fractions (13,000 g pellet) of WT cells and the indicated MIM mutants were subjected to velocity sedimentation and analyzed by SDS-PAGE and Western blotting.

A Films of subcellular fractionations shown in Figure 4A

B

Figure S3. Characterization of a Vps20 ${ }^{\text {MiM1 }}$ chimera in MVB cargo sorting. (A) Uncut Western blot films from the subcellular fraction analysis shown in Fig. 4 A sections $1-7 . M$, membrane fraction; C, cytoplasmic fraction. (B and C) Schematic representation of ESCRT-III complexes constructed with the indicated chimeras and the live-cell imaging of GFP-CPS of the corresponding strains. DIC, differential interference contrast; V, vacuole; E, class E compartment. Bar, $5 \mu \mathrm{M}$.

Figure S4. Characterization of the MVB vesicle morphology. (A) Electron tomography of cryofixed snf7*, vps2* double mutants without VPS2 1 overexpression. 2D slices from tomographic reconstructions and models from 400-nm sections are shown. Arrowheads point to enlarged budding profiles. Limiting MVB membrane (yellow), ILVs (red), and vacuole (brown). Bar, 150 nm . (B) Size distribution of individual membrane neck diameters of the WT and the indicated mutants. (C and D) Electron tomography of cryofixed Vps4-L64D (C) and Vps4-I18D (D) mutants. 2D slices from tomographic reconstructions and models from 400-nm sections are shown. Arrowheads point to enlarged budding profiles. Limiting MVB membrane (yellow), ILVs (red), vacuole (brown), nuclear envelope (blue), and class E compartments (green) are shown. Bars, 150 nm . (E) EM of cryofixed vma4D mutants or in combination with the indicated mutants. A, putative autophagosomal structures. Bars, 500 nm . (F) Mean diameters of ILVs inside the vacuoles of the respective vma40 mutants ($n=50$). Error bars indicate the SDs. ${ }^{* *}, \mathrm{P}<0.01$; $^{* * *}, \mathrm{P}<0.001$.

Figure S5. Analysis of $s n f 7^{*}, ~ v p s 2^{*}$ double mutants. (A) vps4-ts mutants and $s n f 7^{*}$, vps2*, vps4-ts mutants were grown at the permissive temperature and shifted to the nonpermissive temperature $\left(37^{\circ} \mathrm{C}\right)$ for 4 h .15 min before cells were shifted back to $26^{\circ} \mathrm{C}, 50 \mu \mathrm{~g} / \mathrm{ml}$ cycloheximide (CHX) was added, and live-cell imaging of GFP-CPS of the corresponding strains at the indicated time points and growth conditions was performed. V, vacuole; E, class E; DIC, differential interference contrast. (B, top) Chromosomally integrated Vps23-GFP is functional and does not affect the transport of mCherry-CPS 1 into the vacuole. In WT cells, the majority of Vps23-GFP was detected in the cytoplasm and sometimes on dots (endosomes). In vps 4Δ mutants, Vps23-GFP accumulated on dots that colocalized with class E compartments. Little Vps23-GFP was in the cytoplasm. In snf7*, vps2* mutants, Vps23-GFP was found not only on class E compartments but also in the cytoplasm. (C) Quantification of Vps23-GFP subcellular distribution. Fluorescence intensities of Vps23-GFP in ≥ 42 cells were measured in the cytoplasm and on dots. The ratio of the cytoplasmic signal/dots was normalized. SDs are shown. Bars, $5 \mu \mathrm{M}$.

Table S1. SILAC-based quantification of Vps4-HA immunoprecipitation analysis using MaxQuant

Protein IDs	Protein description	Ratio H/L normalized	Ratio H/L variability	Ratio H/L count	Peptide counts (all)	Sequence coverage	MM	Sequence length	PEP	Intensity	Intensity L	Intensity H
			\%			\%	kD	aa				
Vps4-HA IP WT (heavy) mixed with vps2* (light)												
YPR173C	VPS4	1.1476	15.99	86	33	75.1	48.172	437	1.16×10^{-221}	7,035,200,000	3,608,100,000	3,427,000,000
YMR077C	VPS20	n. def.	n. def.	0	1	4.5	25.638	221	0.088573	1,433,100	0	1,433,100
YLR025W	SNF7	n. def.	n. def.	0	4	19.2	26.987	240	5.83×10^{-21}	6,366,300	0	6,366,300
YKL04IW	VPS24	14.907	11.966	11	11	50.4	26.242	224	3.56×10^{-78}	251,670,000	34,144,000	217,520,000
YKL002W	DID4	29.205	10.419	8	11	31	26.29	232	2.08×10^{-25}	59,533,000	9,399,500	50133000
YKR035W-A	DID2	10.385	21.009	10	10	42.2	23.091	204	1.05×10^{-51}	50,926,000	12,415,000	38511000
Vps4-HA IP WT (heavy) mixed with mock IP (no Vps4-HA; light)												
YPR173C	VPS4	69.612	164.56	27	38	80.5	48.172	437	0	4,098,400,000	260,570,000	1,205,500
YMR077C	VPS20	n. def.	n. def.	0	1	12.2	25.638	221	0.20212	1,205,500	0	14,346,000
YLR025W	SNF7	n. def.	n. def.	0	6	22.5	26.987	240	4.65×10^{-42}	14,346,000	0	60,564,000
YKL041W	VPS24	4.6355	28.963	3	10	46.9	26.242	224	6.29×10^{-67}	63,883,000	3,318,800	21,128,000
YKL002W	DID4	n. def.	n. def.	1	10	38.8	26.29	232	3.41×10^{-33}	21,510,000	381,720	16,752,000
YKR035W-A	DID2	n. def.	n. def.	1	8	40.2	23.091	204	1.04×10^{-57}	20,506,000	3,754,400	

Relates to Fig. 1 D. H, heavy; IP, immunoprecipitation; L, light; MM, molecular mass; n. def., not defined; PEP, posterior error probability.

Table S2. SILAC-based quantification of Vps4-HA immunoprecipitation analysis using Proteome Discoverer

Accession	Description	H/L	H/L variability	H/L count	No. of peptides	Coverage	MM	Sequence length	Score	Area (counts)
			\%				kD	$a \mathrm{a}$		
Vps4-HA IP WT (heavy) mixed with vps2* (light)										
YPR173C	VPS4	1.216	7.0	49	28	73.68	48.1	437	19,047.41	1.225×10^{10}
YMR077C	VPS20	n. def.	n.a.	0	1	4.52	25.6	221	44.29	9.921×10^{6}
YLR025W	SNF7	n. def.	n.a.	0	3	15.00	27.0	240	192.91	1.889×10^{7}
YKL041W	VPS24	11.576	19.4	5	8	40.63	26.2	224	865.96	3.051×10^{8}
YKL002W	DID4	18.499	0.3	2	9	26.72	26.3	232	583.16	3.462×10^{8}
YKR035W-A	DID2	8.400	6.9	6	10	42.16	23.1	204	917.22	1.859×10^{8}
Vps4-HA IP WT (heavy) mixed with mock IP (no Vps4-HA; light)										
YPR173C	VPS4	n. def.	n. def.	0	34	76.89	48.1	437	17,618.14	1.081×10^{10}
YLR025W	SNF7	n. def.	n. def.	0	5	18.33	27.0	240	329.52	2.181×10^{7}
YKL041W	VPS24	n. def.	n. def.	0	6	33.93	26.2	224	550.72	1.158×10^{8}
YKL002W	DID4	n. def.	n. def.	0	10	38.79	26.3	232	590.37	4.217×10^{8}
YKR035W-A	DID2	n. def.	n . def.	0	8	40.20	23.1	204	466.84	7.211×10^{7}

Relates to Fig. 1 D. Accession numbers were obtained from the Saccharomyces Genome Database. H, heavy; IP, immunoprecipitation; L, light; MM, molecular mass; n.a., not annotated; n. def., not defined.

Table S3. Yeast strains used in this study

Strain	Name	Genotype	Source
SEY6210.1	WT	Mat a leu2-3, 112 ura4-52 his3-4200 trp1-4901 lys2-801 suc2-49	Robinson et al., 1988
MBY3	vps4 ${ }^{\text {a }}$	SEY6210, VPS4::TRP1	Babst et al., 2002a
MBY4	vps4 4	SEY6210.1, VPS4::TRP1	Babst et al., 2002a
DTY65	vps24	SEY6210, VPS2::HIS3	Babst et al., 2002a
BWY101	vps254	SEY6210, VPS25::HIS	Babst et al., 2002b
MBY24	snf74	SEY6210.1, SNF7::HIS3	Babst et al., 2002a
DTY90	vps4 4 , snf7 4	MBY3, MBY24	This study
MAY24	vps44, vps $20^{\text {miml }}$	MBY3, vps20-MIM $1:: T R P 1$	This study
MAY28	vps2*	SEY6210.1, vps2(L228D, K229D)::TRP1	This study
MAY29	snf7*	SEY6210.1, snf7(L199D)::TRP1	This study
MAY27	vps24*	SEY6210.1, vps24(R224D,L225D,L228D) : TRP1	This study
MAY25	vps20*	SEY6210.1, vps20(L188D) : $\mathrm{TRP1}$	This study
MAY91	snf74, vps2*	MBY24, vps2(L228D, K229D)::TRP1	This study
MAY88	vps44, snf74 vps2*	MAY91, MBY3	This study
MAY58	vps 4Δ, vps20*	MB3, MAY25	This study
MAY40	vps44, snf7*	MBY3, MAY29	This study
MAY56	vps44, vps24*	MBY3, MAY27	This study
MAY39	vps44, vps2*	MBY3, MAY28	This study
MAY55	snf7*, vps2*	MAY39, MAY29	This study
MAY72	vps44, vps2*, snf7*	MAY39, MAY28	This study
MAY67	vps24*, vps2*	MAY39, MAY27	This study
MAY65	vps44, vps20*, vps2*	MAY39, MAY25	This study
MAY66	vps20*, vps24*	MAY58, MAY27	This study
MAY68	vps44, vps20*, vps24*, vps2*	MAY65, MAY66	This study
MAY70	$\begin{gathered} \text { vps } 4 \Delta, \text { vps } 20^{*}, \operatorname{snf7*}, \text { vps } 24^{*}, \\ \text { vps2* } \end{gathered}$	MAY68, MAY29	This study
MAY60	vps20*, snf7*, vps24*, vps2*	MAY68, MAY29	This study
MAY52	vps20*, snf7*, vps24*	MAY68, MAY29	This study
MAY69	vps44, vps20*, snf7*	MAY68, MAY29	This study
MAY5 1	vps 4Δ, vps20*, snf7*, vps24*	MAY68, MAY29	This study
MAY43	vps44, vps20*, snf7*, vps2*	MAY68, MAY29	This study
MAY53	snf7*, vps24*, vps2*	MAY68, MAY29	This study
MAY54	vps44, snf7*, vps24*, vps2*	MAY68, MAY29	This study
MAY37	$v p s 24(\Delta \mathrm{MIM})$-Flag	SEY6210.1, vps24-D209-FLAG::HIS3	This study
DTY441	$v m a 4 \Delta$	SEY 6210.1, VMA4::URA3	Teis et al., 2010
DTY442	vma4 ${ }^{\text {d }}$	SEY 6210, VMA4::URA3	Teis et al., 2010
DTY494	vma44, vps20*	DTY442, MAY25	This study
DTY491	vma44, snf7*	DTY442, MAY29	This study
DTY496	vma44, vps20*, vps24*	DTY494, MAY27	This study
MAY85	vps2*, vps $20^{\text {mimı }}$	MAY28, vps20-MIM $1::$ TRP 1	This study
DTY492	vma4 4 , vps2*	DTY442, MAY28	This study
DTY537	snf74, vps24	MBY24, DTY65	This study
MAY98	vps254, vps2*, snf7*	MAY55, BWY101	This study

Table S4. Plasmids used in this study

Plasmids	Description	Source
pMB31	pGEX-KG, GST-VPS4	Babst et al., 1997
ECE12	pGEX-KG, GST-vps4 ${ }^{\text {E233Q }}$	This study
pMA16	pGEX-6P1, GST-VPS2	This study
pMA12	pGEX-6P 1, GST-snf7 $^{\text {M1M } 1}$	This study
pMA13	pGEX-6P 1, GST-snf7 ${ }^{\text {M1M1 (L228D, K229D) }}$	This study
pDT56	pGEX-KG, GST-SNF7	This study
pMA11	pFA6a, (VPS2)MIM1(L228D, K229D)::TRP1	This study
pMA10	pFA6a, (VPS2)MIM $1:: T R P 1$	This study
pMA43	pFA6a, snf7(L199D)::TRP1	This study
pMA18	pFA6a, vps20(L188D) ::TRP1	This study
pMA19	pFA6a, vps24(R224D, L225D, L228D)::TRP1	This study
pMA40	pRS416, snf7 ${ }^{\text {M1M }}$	This study
pMA41	pRS416, snf7 ${ }^{\text {M1M }}$ (L228D, K229D)	This study
pOS063	pRS415, VPS4-HA	This study
pMA25	pGEX-KG, GST-vps4 ${ }^{164 D}$	This study
pMA24	pGEX-KG, GST-vps4 ${ }^{118 D}$	This study
pMA48	pRS416, vps25 ${ }^{\text {T1 } 50 \mathrm{~K} \text {-Flag }}$	Teis et al., 2010
pMA49	prs415-тdн3 GFP-VPS2 1	This study
pMA50	pRS414, vps4 ${ }^{\text {E233Q }}$	This study
pMA5 1	pGEX-6P1, GST-vps2-MIM2-MIM 1	This study
pMA52	pGEX-KG, GST-vps2-MIM2	This study
pMA53	pRS415-ADHI - $^{\text {a }}$ 2-MIM2-MIM 1	This study
pMA54	pRS415-ADHı $\mathrm{vps} 2-\mathrm{MIM} 2$	This study
pMA55	pRS415-ADH1 VPS 2	This study
pMA56	pRS415-ADHIVps2(1-214)	This study
pMA42	pRS415, vps $4^{\text {ts }}$	Babst et al., 1997
pOS015	pRS415, vps $4^{\text {E233Q }}$	This study
pMP3	pRS416, тDн3 GFP-VPS21	This study
pDT82	pRS416, VPS4-HA	This study
pDT95	pGEX-KG, GST-VPS4-HA	This study
pDT74	pRS413, VPS4-HA	This study
pDT75	pRS413, vps4 ${ }^{118 \mathrm{D}}$-HA	This study
pDT76	pRS413, vps4 ${ }^{\text {464D }}$-HA	This study
pDT48	pRS413, vps4 ${ }^{118 \mathrm{D}, \mathrm{E} 233 \mathrm{Q}}$ - HA	This study
pDT49	pRS413, vps4 ${ }^{164 \mathrm{D}, \text { E233Q }-\mathrm{HA}}$	This study
pDT83	pRS413, vps4 $4^{\text {E233Q}}{ }^{\text {-HA }}$	This study
pDN252	PGK1pr::RLuc SNA3-Fluc (pDN251)	Nickerson et al., 2012
pDT45	pRS413, vps4 $4^{18 \mathrm{D}}$	This study
pDT46	pRS413, vps4 ${ }^{164 \mathrm{D}}$	This study

Table S5. Primers used in this study

Primer name	Primer sequence ($5^{\prime} \rightarrow 3^{\prime}$)
VPS20-MIM2* forward	GATCTTAATTAACGATCCATCATTGCCTCAAGGAGAACAAA
Vps20-MIM2* reverse	GATCGGCGCGCCTCAGGATAGTAATGCTAAAGGTTCC
SNF7-MIM2* forward	GATCTTAATTAACGATCCTAGTGTTCCAAGTAATAAAATTA
SNF7-MIM2* reverse	GATCGGCGCGCCTCAAAGCCCCATTTCTGCTTGTAGT
Vps24-MIM1* forward	TAACAGGATGGTAAATGAAATGCGTGAAGATGACAGAGCTGATCAAAACTAGGG
Vps24-MIM1* reverse	CGCGCCCTAGTTTTGATCAGCTCTGTCATCTTCACGCATTTCATTTACCATCCTTTAAT
Vps2-MIM1* forward	TAACGGTAATCCTGACGATGACTTGCAAGCTCGGTTGAACACTGACGATAAGCAGACTTGAGG
Vps2-M1M1* reverse	CGCGCCTCAAGTCTGCTTATCGTCAGTGTTCAACCGAGCTTGCAAGTCATCGTCAGGATTACCGTTAAT
Vps2-MIM1 forward	TAACGGTAATCCTGACGATGACTTGCAAGCTCGGTTGAACACTTTGAAGAAGCAGACTTGAGG
Vps2-MIM1 reverse	CGCGCCTCAAGTCTGCTTCTTCAAAGTGTTCAACCGAGCTTGCAAGTCATCGTCAGGATTACCGTTAAT
vps20GFPF2	ACGGAGGAGAGATCAGACACTAAGGAACCTTTAGCATTACTATCCCGGATCCCCGGGTTAATTAA
vps20GFPR1	GAAGGAACCTATTTACATTCCCTTTATTTTTAATTTTGAAGCTACGAATTCGAGCTCGTTTAAAC
Snf7_Sal l_forward	GAATGTCGACCAAGTTTTGACTTACAATTGCGGCT
Snf7-RIPGLIN-MIM1_reverse	TTAATTAACCCGGGGATCCGAAGCCCCATTTCTGCTTGTAGTTC
Snf7-RIPGLIN-MIM1_forward	GAACTACAAGCAGAAATGGGGCTTCGGATCCCCGGGTTAATTAA
snf7 ${ }^{\text {M1M1 }}$ _3_reverse	CTAAACCGCATAGAACACGTTCAAGTCTGCTTCTTCAAAG
Snf7_Spe 1_reverse	GCCGACTAGTCGTTATTTGGGTTTTAGTCAATTAAAAGC
snf7 ${ }^{\text {MMM1 }}$ _3_forward	CTTTGAAGAAGCAGACTTGAACGTGTTCTATGCGGTTTAG
pGEX-6P1, Vps2 forward	GATCGGATCCATGAGTTTGTTTGAGTGGGTATTTG
pGEX-6P1, Vps2 reverse	GCTACTCGAGTCAAGTCTGCTTCTTCAAAGTGTTC
Vps2_Sal 1_reverse	GATCGTCGACAACTTTAGTGACGAGATTGAG
Vps2 2 MIM 1-reverse	CATTAAATATACTCAGAGCGCTCAATTACCGTGAAATTCTGATCCGGC
Vps2 2 MIM I-forward	GCCGGATCAGAATTTCACGGTAATTGAGCGCTCTGAGTATATTTAATG
Vps2_Xbal_forward	GATCTCTAGAATGAGTTTGTTGAGTGGGTATTTG
Vps2 2 MIM I-MIM2-MIMI P1	ATTACTTGGAACACTAGGTAGTGAGACTTTGTTCTCTGTTTCAGGAATCCCCATCGCTGT
Vps2 2 MIM 1-MIM2-MIM1 P2	TACCTAGTGTTCCAAGTAATAAAATTAAACAAAGTGAGCCTATTGGCGCCGGATCAGAAT
Vps2 2 MIM I-MIM2 P2	TACCTAGTGTTCCAAGTAATAAAATTAAACAAAGTGAGTGAGCGCTCTGAGTATATTT
Vps2_BamH1_forward	GATCGGATCCATGAGTTTGTTTGAGTGGGTATTTG
Vps2-SMIM2-MIM 2-MIMI_Xhol reverse	CCCCGGGCTCGAGTCAAGTCTGTTTCTTCAAAGTGTT
Vps2--MIM2-M1M2_Xhol reverse	CCCCGGGCTCGAGTCACTCACTTTGTTTAATTTTATT

Standard molecular biology was used to clone the ESCRT-III-MIM* tags into pFA6a-TRP1 Longtine vectors. The respective point-mutated codons are shown in bold (Leul99 in Snf7, Leu 188 in Vps20, Arg224/Leu225/Leu228 in Vps24, and Leu228/Lys229 in Vps2). Vps20 was C-terminally MIM1 tagged by chromosomal integration. Standard molecular biology was used to clone snf7MMI/snf7MMI* including the endogenous promoter and terminator into the pRS416 vector (the Vps2-MIM1 and -MIM1 * fragments were amplified from the corresponding pFA6a-TRP1 Longtine cassettes): pRS4 16 5'-snf7-MIM1/snf7-MIM1 *-3'. snf7-MIM1 and snf7-MIM1 * were excised from the respective pRS416 plasmids and subcloned into PGEX-6P1. Standard molecular biology was used to clone VPS2/vps2(1-214)/vps2-MIM2 and vps2-MIM2-MIM1 under the control of an ADH1 promoter into the pRS4 15 vector. vps2-MIM2 and vps2-MIM2-MIM1 constructs were PCR amplified from the respective pRS415 plasmids and subcloned into pGEX-6P1.

Video 1. Electron tomography and 3D modeling of a cryofixed WT yeast cell overexpressing Vps21. Set plane stepping followed by contour modeling of endosomal membranes (yellow), ILVs (red), and the nuclear envelope (blue) and stand-alone rotation of the contour model.

Video 2. Electron tomography and 3D modeling of a cryofixed snf7* mutant overexpressing Vps21. Set plane stepping followed by contour modeling of endosomal membranes (yellow), ILVs (red), and the nuclear envelope (blue) and stand-alone rotation of the contour model.

Video 3. Electron tomography and 3D modeling of a cryofixed vps2* mutant overexpressing Vps21. Set plane stepping followed by contour modeling of endosomal membranes (yellow), ILVs (red), and the class E-like structure (green) and stand-alone rotation of the contour model.

Video 4. Electron tomography and 3D modeling of a cryofixed snf7*, vps2* mutant overexpressing Vps21. Set plane stepping followed by contour modeling of endosomal membranes (yellow), ILVs (red), and the nuclear envelope (blue) and stand-alone rotation of the contour model.

Video 5. Electron tomography and 3D modeling of a cryofixed snf7*, vps2*, vps25 ${ }^{7150 \mathrm{~K}}$ mutant overexpressing Vps21. Set plane stepping followed by contour modeling of class E compartment (green) and the vacuolar membrane (brown) and standalone rotation of the contour model.

References

Babst, M., T.K. Sato, L.M. Banta, and S.D. Emr. 1997. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16:1820-1831. http://dx.doi.org/10.1093/emboj/16.8.1820
Babst, M., D.J. Katzmann, E.J. Estepa-Sabal, T. Meerloo, and S.D. Emr. 2002a. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell. 3:271-282. http://dx.doi.org/10.1016/S1534-5807(02)00220-4
Babst, M., D.J. Katzmann, W.B. Snyder, B. Wendland, and S.D. Emr. 2002b. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell. 3:283-289. http://dx.doi.org/10.1016/S1534-5807(02)00219-8
Robinson, J.S., D.J. Klionsky, L.M. Banta, and S.D. Emr. 1988. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8:4936-4948.
Teis, D., S. Saksena, B.L. Judson, and S.D. Emr. 2010. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J. 29:871-883. http://dx.doi.org/10.1038/emboj.2009.408

