Chen et al., http://www.jcb.org/cgi/content/full/jcb.201307043/DC1

Figure S1. Alignment of NDC1. Ndc 1 protein sequences from Homo sapiens, Mus musculus, Rattus norvegicus, Xenopus laevis, Danio rerio, Drosophilia melanogaster, Arabodopis thaliana, Caenorhabditis elegans, Neurospora crassa, Schizosaccharomyces pombe, and Saccharomyces cerevisiae were aligned using Clustal-W and displayed using Clustal-X. The six transmembrane domains (predicted by TMPRED software) and the positions of the 28 conserved amino acids analyzed in this study are indicated. Previous deletion analysis found that residues 368-466 in S. cerevisiae Ndc 1 are nonessential, but all other deletions were inviable (Lau et al., 2004).

Figure S2. MYTH analysis of $n d c 1$ alleles. (A) Prey plasmids containing POM152, POM34, NBP1, or MPS3 were tested in combination with bait plasmids containing no insert (vector), wild-type NDC1, or point mutations in NDC1 as indicated (see Fig. S1). ndcl-1 (S119N) and ndcl-39 (T14M, F218V, L288M, E293G, M457T, and F643L) were also characterized (Winey et al., 1993; Lau et al., 2004). The presence of both bait and prey plasmids was detected on SD-Leu-Trp media, and activation of the reporters in MYTH was assayed on SD-Leu-Trp-His-Ade plus 3-AT, which reduces background by selecting for robust expression of HIS3. Plates were incubated for 3 d at $30^{\circ} \mathrm{C}$ and then placed at $4^{\circ} \mathrm{C}$ overnight. Asterisks/colors indicate mutants that are described in the text and summarized in Table 1. Blue is used for the allele that is unable to bind to Pom34, Pom 152, Nbp 1, and Mps3; red is used for alleles that are unable to bind Nbp 1 and Mps 3 but bind to Pom 152 and Pom34; green is used for alleles that are unable to/weakly bind to Mps3 but bind to Nbp1, Pom152, and Pom34. Although ndc1-1 mutants have a defect in SPB duplication at $11-16^{\circ} \mathrm{C}$ (Winey et al., 1993), the ndcl-1 bait was able to interact with all tested preys. Because the MYTH system does not work at low temperatures (not depicted), we were unable to test interactions at the nonpermissive temperature for this allele. (B) Expression of the baits in whole-cell extracts was analyzed by Western blotting using anti-LexA antibodies. Pgk 1 served as a loading control and allowed for normalization of the levels of the baits. The strain containing an empty vector $(-)$ was assigned a value of 0 , whereas the strain containing wild-type Ndc 1 was given a value of 1 . The high background of the LexA antibody made quantification difficult. For mutant alleles examined in greater detail, the addition of GFP to the baits resulted in better detection both biochemically and cytologically (see Fig. 1 F; not depicted).

A

Figure S3. Relationship between ndc1 mutants and other nucleoporins. (A) Bait and prey plasmids producing the indicated protein were tested for interaction in the MYTH strain (SLJ552). 10-fold serial dilutions of cells were spotted onto SD-Leu-Trp and SD-Leu-Trp-His-Ade+3-AT plates that were incubated for 3 d at $30^{\circ} \mathrm{C}$ and then placed at $4^{\circ} \mathrm{C}$ overnight. The Ndc 1 wild-type control is shown in Fig. 1 E . (B) Prey plasmids producing the indicated protein (Nup59 or Yop 1) and bait plasmids containing NDC1 or ndc 1-L562S were introduced into wild-type cells used for MYTH (SLJ5572) or a version containing a deletion of POM 152 (SLJ6066). 10-fold serial dilutions of cells were spotted onto SD-Leu-Trp and SD-Leu-Trp-His-Ade and plates were incubated for 2 d at $30^{\circ} \mathrm{C}$. (C) ndc 1-L562S pURA3-NDC1 was introduced into strains containing the indicated deletions, and growth of the double mutants and the single mutant parents was tested by plating 10 -fold serial dilutions of cells on SD complete or $5-\mathrm{FOA}$. Plates were incubated for 3 d at $23^{\circ} \mathrm{C}$.

Figure S4. Levels of ndc $\mathbf{1 - L 5 6 2 S}$ at the SPB and NE. Images from Fig. 5 A were broken down into G1, S, G2/M, and late M phases of the cell cycle using bud size, SPB number, and distance between SPBs as a marker for cell cycle position. G1 cells were defined as unbudded cells that contain a single SPB. S-phase cells were defined as cells with a small bud and a single SPB. G2/M cells had a medium to large bud and two SPBs that were separated by less than $2 \mu \mathrm{~m}$. Large-budded cells that contained two SPBs separated by greater than $2 \mu \mathrm{~m}$ were defined at late M phase. The average total fluorescence intensity at the SPB and the NE is shown as well as the ratio of SPB to NE intensity. Error bars depict the SEM. Red and black single ($\mathrm{P}<10^{-2}$) and double asterisks $\left(P<10^{-4}\right)$ show statistically significant values compared with wild-type and the $n d c 7-L 562 S$, respectively, using the Student's t test.

Strain name	Relevant genotype	
SLJ77	MATa ADE2 lys 2a	
SL6881	MATa ndc 1::NDC1-GFP-HYGMX ADE2+	
SLJ7484	MATa his $3 \Delta 200$ trp $1-901$ leu2-3, 112 ade2 LYS2::\|(lexAop)4-HIS3 ura3::	lexAop)8-lacZ ade2::(lexAop)8-ADE2 GAL4 ADE2+ pBT3-STE-NDC I-GFP
SLI7848	MATa leu2::GAL-NDC1-GFP-LEU2; ADE2; lys24	
SL5572	MATa his34200 trpl-901 leu2-3,112 ade2 LYS2::(lexAop)4-HIS3 ura3::\|lexAop)8-lacZ ade2::(lexAop)8-ADE2 GAL4	
SLJ7483	MATa his34200 trp 1-901 leu2-3, 112 ade2 LYS2::(lexAop)4-HIS3 ura3::\|lexAop)8-lacZ ade2:::(lexAop)8-ADE2 GAL4 ADE2+	
SL6064	MATa ndc 14::KANMX pURA3-NDC1	
SLJ6166	MATa ndc 13: KANMX::NDC1-TRP1-KANMX pURA3-NDC1	
SLJ6170	MATa ndc 13 ::KANMX::ndc 1-A290E-TRP 1-KANMX pURA3-NDC1	
SL6167	MATa ndc 14::KANMX::ndc 1-39-TRP 1-KANMX pURA3-NDC1	
SL6176	MATa ndc 13: KANMX::ndc 1-A527E-TRPI-KANMX pURA3-NDC1	
SL6168	MATa ndc 14 : KANMX::ndcl-1-TRP1-KANMX pURA3-NDC1	
SL6169	MATa ndc 14 ::KANMX::ndc l-V180G-TRP1-KANMX pURA3-NDC1	
SL66171	MATa ndc 13::KANMX::ndc 1-E293A-TRP1-KANMX pURA3-NDC1	
SL6172	MAT α ndc 14::KANMX::ndc 1-L294R-TRP1-KANMX pURA3-NDC1	
SL6173	MATa ndc 14 ::KANMX::ndc 1-A298K-TRP1-KANMX pURA3-NDC1	
SL6321	MAT pom1524 ::NATMX ndc 14: KANMX::ndcl-V180G-TRP1-KANMX pURA3-NDC1	
SL6 622	MATa pom 1524 ::NATMX ndc 14::KANMX::ndc 1-E293A-TRP1-KANMX pURA3-NDC1	
SL6323	MATa pom 1524::NATMX ndc 14::KANMX::ndc 1-L294R-TRP1-KANMX pURA3-NDC1	
SL6324	MATa pom 1524::NATMX ndc 14: $:$ KANMX::ndc 1-A298K-TRPI-KANMX pURA3-NDC1	
SL6325	MATa pom 1524 ::NATMX ndc 14: $:$ KANMX::ndc 1-V340Q-TRP 1-KANMX pURA3-NDC1	
SL6795	MATa NUP49-mCherry-HYGMX ADE2+	
SL7486	MATa ndc 14 ::KANMX::ndc 1-A290E-TRP1-KANMX NUP49-mCherry-HYGMX ADE2+	
SL6174	MATa ndc 13: KANMX::ndc 1-R306D-TRP 1-KANMX pURA3-NDC1	
SL6175	MATa ndc 14 : KANMX::ndc l-V340Q-TRP1-KANMX pURA3-NDC1	
SL6179	MATa pom 1524 ::NATMX ndc 14: KANMX::ndc 1-A290E-TRP1-KANMX pURA3-NDC1	
SL6178	MATa pom 1524 ::NATMX ndc 14::KANMX::NDC1-TRP1-KANMX pURA3-NDC1	
SL6180	MATa pom 1524::NATMX ndc 14::KANMX::ndc 1-L562S-TRP1-KANMX pURA3-NDC1	
SL6181	MATa pom 1524::NATMX ndc 14 ::KANMX::ndc 1-39-TRP1-KANMX pURA3-NDC1	
SLOOO 1	MATa	
SL6177	MAT α ndc 14::KANMX::ndc 1-L562S-TRP 1-KANMX pURA3-NDC1	
SL6367	MATa ndc 14::KANMX::NDC1-3HA-HIS3MX-TRP1-KANMX leu2::GAL1-NDC1-GFP-LEU2	
SL6 6369	MATa ndcl1:::KANMX::ndcl-L562S-3HA-HIS3MX-TRPI-KANMX leu2::GAL1-NDC1-GFP-LEU2 P URA3-NDC1	
SLJ6847	MATa ndc 14::KANMX::ndc 1-L562S-3HA-His3MX-TRP1-KANMX leu2::GAL1-NDC1-GFP-LEU2 SPC42-mCherry-HYGMX GFP-TUB1-NATMX pURA3-NDC1	
SL6848	MATa ndc 14::KANMX::NDCI-3HA-HIS3MX-TRP1-KANMX leu2::GALI-NDC I-GFP-LEU2 SPC42-mCherry-HYGMX GFP-TUB 1-NATMX	
SLJ6822	MATa ndc 14::KANMX::NDC1-3HA-HIS3MX-TRP1-KANMX leu2::GAL1-NDC1-GFP-LEU2 NUP49-mCherry-HYGMX ADE2+	
SL6823	MATa ndc 14::KANMX::ndc 1-L562S-3HA-HIS3MX-TRPI-KANMX leu2::GALI-NDC1-GFPLEU2 NUP49-mCherry-HYGMXPURA3-NDC1	
SL6066	MATa pom 1524::KANMX his34200 trp 1-901 leu2-3, 112 ade2 LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-lacZ ade2:::\|lexAop	8-ADE2 GAL4 ADE2+
SL6288	MATa ndc 14: :KANMX::NDC1-GFP-HIS3MX-TRP-KanMX SPC42-mCherry-URA3 pLEU2-NDC1	
SL6588	MATx pom 152Δ ::NATMX ndc $14::$ KANMX::NDC1-GFP-HIS3MX-TRP-KanMX SPC42-mCherry-URA3 pLEU2-NDC1	
SL6638	MATa ndc 14::KANMX::ndc 1-L562S-GFP-HIS3MX-TRP 1-KANMX SPC42-mCherry-HYGMX plEU2-NDC1	
SLJ6734	MATa pom 1524 ::NATMX ndc 14::KANMX::ndc1-L562S-GFP-HIS3MX-TRP1-KANMX SPC42-mCherry-HYGMX pLEU2-NDC1	
SLJ910	MATa mps3-1 pURA3-MPS3	
SL7436	MATa MPS3-YFP-HIS3MX NDC1-mTurq-URA3MX	

Experiment
Fig. 1 B
Fig. 1, B and C
Fig. $1, B$ and C
Fig. $1, B$ and C
Figs. 1, D and E; 4, B-D; 6 A;
S2; S3, A and B; Tables 1 and 2
Fig. 1 F
Figs. 2 A and 3 A
Figs. 2, A-D, 3 A, 4 E, and Tables 1 and 2
Fig. 2, A-G, Fig. 4 E, and Table 1
Fig. 2, A, B, and E, Table 2
Fig. 2, A and B, Table 1
Fig. 2 A
Fig. 2 A, Table 1
Fig. 2 A, Table 1
Fig. 2 A , Table 1
Fig. 2 A, Table 1
Table 1
Table 1
Table 1
Table 1
Table 1
Fig. 2 H
Fig. 2 H
Fig. 3 A, Table 1
Fig. 3 A, Table 1
Fig. 4 E, Table 1
Fig. 4 E , Tables 1 and 2
Fig. 4 E , Tables 1 and 2
Fig. 4 E , Table 2
Fig. 3, A and B; Fig. S3 C
Figs. 3 A, $4 \mathrm{E}, 5 \mathrm{D}$,
S3 C, and Table 2
Fig. $3, B, C$, and F
Fig. 3, B, C, and G-I
Fig. 3, D and E
Fig. 3, D and E
Fig. 3 J
Fig. 3 J
Figs. $4 \mathrm{D}, 6 \mathrm{~A}, \mathrm{~S} 3 \mathrm{~B}$, and Table 2
Fig. 5, A-C, Fig. S4
Fig. 5 E
Fig. 6, B-F

Table S1. Yeast strains (Continued)

Strain name	Relevant genotype	Experiment
SLJ7438	MATa pom 1524::HYGMX MPS3-YFP-HIS3MX NDC1-mTurq-URA3MX	Fig. 6, B-F
SLJ7835	MAT ${ }^{\text {NUP49-YFP-NATMX ndc 1 }}$: : KANMX::NDC1-mTurq-HIS3MX-TRP1-KANMX ADE2+	Fig. $6, G$ and H
SLJ7836	MAT pom 1524::HYGB NUP49-YFP-NATMX ndc 14::KANMX::NDC1-mTurq-HIS3MX-TRP1KANMX ADE2+	Fig. 6, G and H
SLJ6833	MATa pom344::HYGB ndc 14::KANMX::ndc 1-L562S pURA3-NDC1 LYS+	Fig. S3 C
SLJ6729	MATa pom34D ::HYGMX	Fig. S3 C
SLU6773	MATa nup 1574::HYGMX	Fig. S3 C
SLU6769	MATa nup 1704::HYGMX	Fig. S3 C
SLU6772	MATa nup424::HYGMX	Fig. S3 C
SLJ6770	MATa nup 2Δ ::HYGMX	Fig. S3 C
SLU6935	MATa nup 1574::HYGMX ndc 14::KANMX::ndc 1-L562S-TRP1-KANMX pURA3-NDC1	Fig. S3 C
SLJ6936	MATa nup 1704::HYGMX ndc 1 $1:: K$ MNMX::ndc 1-L562S-TRP1-KANMX pURA3-NDC1	Fig. S3 C
SLJ6934	MAT α nup42d::HYGMX ndc 1 $1:$ KANMX::ndc 1-L562S-TRP1-KANMX pURA3-NDC1	Fig. S3 C
SLJ6933	MATa nup24::HYGMX ndc 1 $1:$ KANMX::ndc 1-L562S-TRP1-KANMX pURA3-NDC1	Fig. S3 C

References

Lau, C.K., T.H. Giddings Jr., and M. Winey. 2004. A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. Eukaryot. Cell. 3:447-458. http://dx.doi.org/10.1128/EC.3.2.447-458.2004
Winey, M., M.A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J. Cell Biol. 122:743-751. http://dx.doi.org/10.1083/jcb.122.4.743

