Supplemental material

JCB

Niessen et al., http://www.jcb.org/cgi/content/full/jcb.201307001/DC1

Figure S1. **Efficient epidermis-specific deletion of aPKC** λ in **aPKC** λ ^{epi-/-} mice. (A) Real-time RT-PCR analysis of aPKC λ and aPKC ζ expression using RNA of newborn and P20 Ctr and aPKC λ ^{epi-/-} mice. Data are presented as mean values \pm SD; n=5 mice/genotype; *, P < 0.05. (B) PCR analysis to genotype mice using aPKC λ -specific and K14-Cre-specific primers on genomic DNA isolated from tail biopsies showing the indicated genotypes with H₂O as a negative control. Wt, wild type; fl, floxed; del, deletion. (C) Real-time RT-PCR analysis of aPKC λ and aPKC ζ on RNA isolated from P0 newborn and aPKC λ ^{-/-} epidermis. n=5 mice/genotype. Data are presented as mean values \pm SD; *, P < 0.05. (D) Western blot analyses of Ctr and aPKC λ ^{-/-} keratinocytes using an antibody recognizing total aPKC λ / ζ or phospho (p)-aPKC λ . Rac1 and GAPDH served as a loading control. (E) Immunofluorescence analysis of aPKC λ on P20 dorsal skin of Ctr and aPKC λ ^{epi-/-} mice. Nuclei were counterstained with DAPI.

Figure S2. Altered morphology of the epidermis and appendages upon loss of aPKC λ . (A) Hematoxylin and Eosin staining of Ctr and aPKC $\lambda^{epi-/-}$ paraffin back skin sections at the indicated postnatal days. (B) Whole-mount immunofluorescence analysis for keratin 14 (green) and actin (red) on tails from Ctr and aPKC $\lambda^{epi-/-}$ mice at P58.

Figure S3. Altered hair follicle differentiation in aPKC $\lambda^{-/-}$ mice. (A) Selected Affymetrix global gene expression analysis of hair-specific keratin expression in Ctr and aPKC $\lambda^{\rm epi-/-}$ newborn mice. (B) Western blot analysis of K75 and K82 using epidermal lysates from newborn Ctr and aPKC $\lambda^{\rm epi-/-}$ mice. n=3 mice/genotype. Western blot for β -actin served as a loading control.

Figure S4. Loss of bulge stem cell markers over time. (A) Real-time PCR analysis for aPKC λ or aPKC χ or aP

Figure S5. Stem and progenitor cell changes upon loss of aPKC λ . (A) Immunofluorescence analysis of either MTS24 and K15 (left six panels) or K6 with K15 (right six panels) on whole mounts of P33 tails isolated from Ctr and aPKC $\lambda^{\rm epi-/-}$ mice. Nuclei were counterstained with DAPI. (B) Quantification of FACS analysis for Lrig1 $^+$ cells isolated from epidermis at P33 and P58. n=3 mice/genotype/time point. Data are presented as mean \pm SD; \star , P < 0.05. (C) Immunofluorescence analysis of aPKC on back skin sections of Ctr and aPKC $\lambda^{\rm lgr5-/-}$ mice. Nuclei were counterstained with DAPI. (D and E) Immunofluorescence analysis of Lrig1 (D) or CD34 (E) on P365 back skin sections of Ctr and aPKC $\lambda^{\rm epi-/-}$ mice. Nuclei were stained with propidium iodide (PI).

Table S1. Antibodies

Antigen	Source	Working Dilution	Catalogue Number	Company
Actin	Mouse	WB, 1:10,000	A3853; Lot: 6472J	Sigma-Aldrich
αPKCζ	Rabbit	IF, 1:200	Sc-216	Santa Cruz Biotechnology, Inc.
αPKCλ/ζ; thr 410/403	Rabbit	WB, 1:500	9378; Lot: F7	Cell Signaling Technology
BrdU	Mouse	IF, 1: 20	347580	BD
β-Catenin	Mouse	IF, 1:250; WB, 1: 2,000	610154	BD
CD34	Rat	IF, 1:50	553731	BD
CD34-Alexa 488	Rat	FACS, 1:25	553733	BD
CD43-Alexa 700	Rat	FACS, 1:25	560518	BD
ltga6/CD47f-PE	Rat	FACS, 1:30	555736	BD
K15	Mouse	IF, 1:1,000	MS-1068-P0	Thermo Fisher Scientific
K75	Guinea pig	IF, 1:2,000; WB, 1:4,000	GPK 6hf; Lot: 912040	Progen
K82	Guinea pig	IF, 1:2,000; WB, 1:2,000	GPhHa2; Lot: 906240	Progen
K85	Guinea pig	IF, 1:1,000	GP-hHb5; Lot: 802671	Progen
K28	Guinea pig	IF, 1:1,000	GP-K28; Lot: 802270	Progen
MTS24	Rat	IF, 1:50	/	A. Sonnenberg, Amsterdam, Netherlands
MTS24	Rat	IF, 1:100	/	R. Boyd, Melbourne, Australia
NfatC1	Mouse	IF, 1:50	SC-7294; Lot: D0708	Santa Cruz Biotechnology, Inc.
\$100a6	Rabbit	IF, 1:1,000	RB-1805-A0; Lot: 1805A801F	Neomarkers
Sox9	Rabbit	IF, 1:150	SC-20095; Lot: H2808	Santa Cruz Biotechnology, Inc.
Survivin	Rabbit	IF, 1:400	2808; Lot: 71G4B7	Cell Signaling Technology

Table S2. Microscopy

Microscope (model; manufacturer)	Figure	
Confocal microscope		
BX81; Olympus	2 A; 3 A, C, and E; 5 A, B, and G; 6 A, B, and K; 8 C; S5 A, C, D, and E	
Meta LSM 510; Carl Zeiss	2 E; S2 B	
Fluorescence microscope DeltaVision IX71; Olympus	2 B and C; S1 E; S4 B–D	
Bright-field microscope DM4000B; Leica BX51; Olympus	1 B; 8 B; S2 A 5 D and F	
Electron microscope JSM-5910; JEOL	2 G	