BIOLOGY CELL **Ц** JOURNAL 뽀 Figure S1. Actin halo formation and LGG-1 and ATG-18 recruitment of the Q cell corpse. (A) Still images of actin::GFP in an epithelial cell, hyp7, show actin halo on an apoptotic Q cell (labeled by cytosolic mCherry). Time on the right top is in minutes. The arrows show the formation of actin halo on the Q cell corpse. (B and C) Still images of autophagy markers LGG-1/LC3 (green in B) or ATG-18 (green in C) recruitment onto the outer surface of the Q cell corpse. GFP-tagged LGG-1 and ATG-18 proteins were expressed under either the endogenous promoter for *lgg-1* or hyp7 cell–specific promoter for *atg-18*. The Q cell plasma membrane (mCherry with a myristoylation signal) and histone (his-24::mCherry) were specifically labeled by the *egl-17* promoter. Bars, 5 µm. Figure S2. Statistical analysis of Q cell corpse degradation in WT and autophagy mutants. (A) Q cell corpse engulfment. (B) Q cell corpse duration in the hyp7 cell. (C) Lysosome/CTNS-1::GFP recruitment and duration. (D) GFP::RAB-7 recruitment and duration. (E) GFP::RAB-5 recruitment and duration. Data in A and B and C–E are the same as data in Fig. 2 C and Fig. 3 (A–C), respectively. Data shown are the means \pm SD; n = 10-29 per group in a single experiment. Figure S3. Quantifications of Q cell corpse degradation in WT and autophagy mutants at three-cell and three-neuron developmental stages. *, P < 0.01, $\chi 2$ test (mutant paired with WT). For each data point, n = 15-22 from a single experiment. Video 1. **The birth, engulfment, and degradation of Q cell corpse.** Transgenic *C. elegans* strain (XW6462) expressing GFP-tagged actin cytoskeleton (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 124 min. The display rate is 15 frames per second. Video 2. **The recruitment of CTNS-1 (lysosome) onto Q cell corpse.** Transgenic *C. elegans* strain (XW7289) expressing GFP-tagged CTNS-1 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 116 min. The display rate is 15 frames per second. Video 3. **The recruitment of RAB-7 onto Q cell corpse.** Transgenic *C. elegans* strain (XW6195) expressing GFP-tagged RAB-7 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 137 min. The display rate is 15 frames per second. Video 4. The recruitment of RAB-5 onto Q cell corpse. Transgenic *C. elegans* strain (XW6193) expressing GFP-tagged RAB-5 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 141 min. The display rate is 15 frames per second. Video 5. The recruitment of RAB-5 and ATG-18 onto Q cell corpse. Transgenic *C. elegans* strain (Ex525) expressing BFP-tagged RAB-5 (blue) and GFP-tagged ATG-18 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 16 min. The display rate is seven frames per second. Video 6. The recruitment of actin and EPG-5 onto Q cell corpse. Transgenic *C. elegans* strain (Ex489) expressing BFP-tagged actin (blue) and GFP-tagged EPG-5 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 43 min. The display rate is seven frames per second. Video 7. The recruitment of RAB-7 and LGG-1 onto Q cell corpse. Transgenic C. elegans strain (Ex507) expressing BFP-tagged RAB-7 (blue) and GFP-tagged LGG-1 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 28 min. The display rate is seven frames per second. Video 8. **The recruitment of CTNS-1 and LGG-1 onto Q cell corpse.** Transgenic *C. elegans* strain (Ex522) expressing BFP-tagged CTNS-1 (blue) and GFP-tagged LGG-1 (green) in the hyp7 cell and mCherry in Q cells (red). Images were taken by a time-lapse fluorescence microscope (Axio Observer.Z1) attached to a spinning-disk confocal scan head (CSU-X1 Spinning Disk Unit). Frames were taken every minute for 31 min. The display rate is seven frames per second. Table S1. C. elegans strains used in this study | Strain name | Genetic background | Description | Method | Resource | |-------------|--------------------|---|-----------------------------|---| | GOU344 | N2 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{lag-1} gg-1::gfp | Cross with rdvls1; adls2122 | CGC and this study | | XW6462 | N2 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} act-5::gfp | Cross with rdvls1; qxls289 | This study | | XW7289 | N2 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} ctns-1::gfp | Cross with rdvls1; qxls281 | This study | | XW6195 | N2 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-7 | Cross with rdvls1; qxls317 | This study | | XW6193 | N2 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-5 | Cross with rdvls1; qxls318 | This study | | Ex473 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} epg-5::gfp | Microinjection | This study | | Ex489 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} epg-5::gfp; P _{hyp7} bfp::act-1 | Microinjection | This study | | Ex507 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} gfp::lgg-1; P _{hyp7} bfp::rab-7 | Microinjection | This study | | Ex510 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} epg-5::gfp; P _{hyp7} bfp-TEV-S::rab-5 | Microinjection | This study | | Ex522 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} gfp::lgg-1; P _{hyp7} ctns-1::bfp::unc-54 3' | Microinjection | This study | | Ex525 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::atg-18; P _{hyp7} bfp:rab-5 | Microinjection | This study | | Ex568 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::atg-5b | Microinjection | This study | | Ex570 | unc-76 | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::atg-7 | Microinjection | This study | | Ex513 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::atg-18 | Microinjection | CGC and this study | | Ex505 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} act-5::gfp | Microinjection | CGC and this study | | XW8030 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24 | Cross with rdvls1 | CGC and this study | | XW8031 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} act-5::gfp | Cross with rdvls1; qxls289 | CGC and this study | | Ex527 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} ctns-1::gfp | Microinjection | CGC and this study | | Ex538 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} gfp::rab-7 | Microinjection | CGC and this study | | Ex504 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-5 | Microinjection | CGC and this study | | Ex545 | atg-18 (gk378) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp:: atg-18 (FRRG → FKKG) | Microinjection | CGC and this study | | GOU345 | epg-5 (tm3425) | Pegl-17::myri-mCherry; Pegl-17::mCherry::his-24 | Cross with rdvls1 | S. Mitani's ^a laboratory
and this study | | Ex488 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} epg-5::gfp | Microinjection | S. Mitani's laboratory and this study | | XW7535 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} act-5::gfp | Cross with rdvls1; qxls289 | S. Mitani's laboratory and this study | | XW8821 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{ced-1} ctns-1::gfp | Cross with rdvls1; qxls281 | S. Mitani's laboratory and this study | | XW7534 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-7 | Cross with rdvls1; qxls317 | S. Mitani's laboratory and this study | | XW7538 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-5 | Cross with rdvls1; qxls318 | S. Mitani's laboratory and this study | | XW7538 | epg-5 (tm3425) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24;
P _{hyp7} gfp::rab-5 | Cross with rdvls1; qxls318 | S. Mitani's laboratory and this study | | GOU104 | unc-51 (e1189) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24 | Cross with rdvls1 | CGC and this study | | XW8524 | atg-7 (bp422) | P _{egl-17} myri-mCherry; P _{egl-17} mCherry::his-24 | Cross with rdvls1 | H. Zhang's ^b laboratory
and this study | CGC, Caenorhabditis Genetics Center. ^oTokyo Women's Medical University School of Medicine, Tokyo, Japan. ^bNational Institute of Biological Sciences, Beijing, China. Table S2. PCR products for C. elegans transgenesis | PCR product | Primer 5' | Primer 3' | Template | |---|---|-----------------------------|--| | egl-17 promoter | CAGATGGATGTTTACTGCCAACTGG | AGCTCACATTTCGGGCACCTGAA | N2 genomic DNA | | myr-mCherry | CAGGTGCCCGAAATGTGAGCTATGGGTTCC
TGTATTGGAAAAGTCTC | CTAAAGGGAACAAAAGCTGGAGC | pJWZ50.3 | | P _{egl-17} myr-mCherry | CTTCCGTTCTATGGAACACTC | GAATCATCGTTCACTTTTCACGG | <i>egl-17</i> promoter +
Myristoylation-mCherry | | P _{egl-17} mCherry::his-24 | CTTCCGTTCTATGGAACACTC | GAAGACGTTGAACGTCAAATTATC | egl-17 promoter + mCherry + his-24 | | hyp7 promoter | GCGGATCCAAACTTTATTAGACGTCGCAATTT | TTTGGTTTTTGGGATTTTTGATC | N2 genomic DNA | | gfp::rab-5 | GATCAAAAATCCCAAAAACCAAAATGAGTA
AAGGAGAAGAAC | GAAACGCGCGAGACGAAAGGGCCCGT | Plasmid pPD49.26-P _{ced-1}
gfp::rab-5 | | P _{hyp7} gfp::rab-5 | TTTATTAGACGTCGCAATTTAAT | AAGGCCCGTACGGCCGACTAGTAGG | hyp7 promoter + gfp::rab-5 | | gfp::rab-7 | GATCAAAAATCCCAAAAACCAAAATGAGTA
AAGGAGAAGAAC | GAAACGCGCGAGACGAAAGGGCCCGT | Plasmid pPD49.26-P _{ced-1}
gfp::rab-7 | | P _{hyp7} gfp::rab-7 | TTTATTAGACGTCGCAATTTAAT | AAGGCCCGTACGGCCGACTAGTAGG | hyp7 promoter + gfp::rab-7 | | bfp-tev-s | AGACCCAAGCTTGGTACCATGATGTCAGAG
CTTATTAAGGAG | AGTACCTCCACCTCCGCTGTCCATGT | Plasmid pDONR
P4-P1R- <i>bfp-tev-s</i> | | act-1::unc-54 3' utr | ACATGGACAGCGGAGGTGGAGGTACTATG
TGTGACGACGAGGTTGC | AAGGCCCGTACGGCCGACTAGTAGG | Plasmid pPD49.26-
act-1::unc-54 3'utr | | P _{hyp7} bfp-tev-s::
act-1::unc-54 3' utr | GACGTCGCAATTTAATTTATACAATGACAC | GGAAACAGTTATGTTTGGTATATTGGG | P _{hyp7} + bfp-tev-s+act-1
unc-54 3' utr | Table S3. Plasmids constructed for *C. elegans* transgenesis | Plasmid name | Primer 5' | Primer 3' | Notes | |--|---|--|--| | pCFJ151-MCS-
FLAG-6×HIS-
UNC-54 3'UTR | GCACTAGTGCTAGCTCGCGA-
ACGCGTGACTACAAGGATGA-
CGATGACAAGCACCACCACC-
ACCACCACTAACGCATCGGC-
CGCTGTCATCAGATC | CGACTAGTAGGAAACAGT-
TATGTTTGG | MCS (Nhel-Nrul-Mlul)-FLAG-
6×HIS-UNC-54 3'UTR was
amplified by PCR and then
digested by Spel. It was inserted
into pCFJ151 via its Spel site. | | pCFJ151-P _{hyp} ,~
MCS-FLAG-
6×HIS-UNC-54
3'UTR | GCGGATCCAAACTTTATTAGAC-
GTCGCAATTT | GCGGATCCTTTGGTTTTTGG-
GATTTTTGATC | P _{hyp7} was amplified by PCR. N2
genomic DNA was used as tem-
plate. Then, it was digested by
BamHI and inserted into vector
via the BgIII site. | | pCFJ151-P _{hyp7}
act-5::gfp-FLAG-
6×HIS-UNC-54
3'UTR | CGACGCGTATGGAAGAAGAA-
ATCGCCGCCCTC | GCACGCGTCTATTTGTATAGT-
TCATCCATGCC | act-5::GFP was amplified by PCR from plasmid 95.77-P _{ced.} 1::act-5::gfp. Then, it was digested by Mlul and inserted into vector via the Mlul site. | | pPD49.26-gfp | GCGCTAGCATGAGTAAAGG-
AGAAGAAC | GCGAGCTCTATTTGTATAGTTC-
ATCCATGCC | gfp was amplified by PCR and
then digested with Nhel and
Sacl. It was inserted into vector
via Nhel–Sacl sites. | | pPD49.26-
epg-5::gfp | GCCCCGGGATGGCGGAATT-
GGTTCGTCC | GCGCTAGCTTGCTTACCTAAC-
AATTGCAA | epg-5 was amplified by PCR
from N2 genomic DNA and
digested by Smal and Nhel.
Then, it was inserted into vector
via Smal–Nhel sites. | | pPD49.26-P _{ced-1} ::
epg-5::gfp | na | na | ced-1 promoter (5 kb) was di-
gested by BamHI from plasmid
and inserted into vector via the
BamHI site. | | pPD49.26-gfp | GCGCTAGCATGAGTAAAGGA-
GAAGAAC | GCGGTACCTTTGTATAGTTCAT-
CCATGCC | gfp was amplified by PCR and
then digested with Nhel and
Kpnl. It was inserted into vector
via Nhel-Kpnl sites. | | pPD49.26-P _{ced-1} gfp | na | na | ced-1 promoter (5 kb) was di-
gested by BamHI from plasmid
and inserted into vector via
BamHI site. | | pPD49.26-P _{ced-1}
gfp::lgg-1 | GCGGTACCATGAAGTGGGC-
TTACAAGGAGGAG | CGGGTACCTTATTCCTTCTTTTC-
GACCTC | Igg-1 was amplified by PCR
from N2 genomic DNA and
digested by Kpnl. Then, it was
inserted into vector via Kpnl site. | | pPD49.26-P _{hyp7} | GCGGATCCAAACTTTATTAGA-
CGTCGCAATTT | GCGGATCCTTTGGTTTTTGGGA-
TTTTTGATC | P _{hyp7} was amplified by PCR. N2
genomic DNA was used as tem-
plate. Then, it was digested by
BamHI and inserted into vector
via the BamHI site. | | pPD49.26-P _{hyp7}
bfp | GCGCTAGCATGTCAGAGCTT-
ATTAAGGAG | GCGGTACCATTAAGCTTGTGAC-
CCAGTTTG | bfp was amplified by PCR and digested by Nhel and Kpnl. Then it was inserted into vector via Nhel-Kpnl sites. | | pDONRP4-P1
R P _{hyp7} | AGTGACCTGTTCGTTGTTGC-
AGAAAAATATTTCACTGTTTCAC | CATTTCGGGCACCTGGGGATTT-
TTGATCTGCAAATAITGAC | P _{hyp7} was amplified from N2
genomic DNA and inserted into
pDONRP4-P1 R via In-Fusion
Advantage PCR Cloning kit
(Takara Bio Inc.). | | pDONRP4-P1
R P _{hyp7} bfp-tev-s | CCCGAAATGTGAGCTATGT-
CAGAGCTTATTAAGGAG | AGGTCACTAATACCAAGTACCTC-
CACCTCCGCTGTCCATGT | bfp-tev-s sequence was amplified from plasmid and inserted into the pDONRP4-P1 R P _{hyp7} plasmid via In-Fusion Advantage PCR Cloning kit. | | pDONRP4-P1
R P _{hyp7} gfp-tev-s | CCCGAAATGTGAGCTATG-
AGTAAAGGAGAAGAACTTTTCAC | AGGTCACTAATACCAAGTACCTC-
CACCTCCGCTGTCCATGT | gfp-tev-s sequence was amplified from plasmid and inserted into the pDONRP4-P1 R Phyp7 plasmid via In-Fusion Advantage PCR Cloning kit. | Table S3. Plasmids constructed for C. elegans transgenesis (Continued) | Plasmid name | Primer 5' | Primer 3' | Notes | |--|---|---|---| | pDONRP4-P1 R P _{hyp7} bfp::rab-5 | GGAGGTGGAGGTACTATG-
GCCGCCCGAAACGCAGGA | AGGTCACTAATACCAGAG-
TTTCATCTGATGGTATTGC | rab-5 was amplified from N2
genomic DNA and inserted into
pDONRP4-P1 R P _{hyp7} ::BFP-TEV-S
plasmid via In-Fusion Advantage
PCR Cloning kit. | | pDONRP4-P1 R P _{hyp7}
gfp::atg-7 | GGAGGTGGAGGTACTATG-
GCCACGTTTGTTCCCTTTGTT | AGGTCACTAATACCAGTAC-
ATGAATAATTTCTGACATTAAG | atg-7 was amplified from N2
and inserted into the pDONRP4-
P1 R P _{hyp7} ::BFP-TEV-S plasmid
via In-Fusion Advantage PCR
Cloning kit. | | pDONRP4-P1 R P _{hyp7}
gfp::atg-18 | GGAGGTGGAGGTACTATG-
TCGGCTACAACATCAGAA | AGGTCACTAATACCATTTACT-
CGAATGAGAATGCCA | atg-18 was amplified from N2
genomic DNA and inserted
into pDONRP4-P1 R Phyp7::GFP-
TEV-S::atg-18 3'UTR plasmid
via In-Fusion Advantage PCR
Cloning kit. | | pDONRP4-P1 R P_{hyp^7} gfp::atg-18 (FRRG \rightarrow FKKG) | CCAAATGGACATCGGCTC-
TTTGAATTCAAAAAGGGCGT-
AACTCGCTGTGTCAATATC | GATATTGACACAGCGAGTTA-
CGCCCTTTTTGAATTCAAAGA-
GCCGATGTCCATTTGG | atg-18 FKKG was amplified from the pDONRP4-P1 R P _{hyp7} gfp::atg-18 plasmid and then inserted into the P _{hyp7} ::gfp-tev-s plasmid via In-Fusion Advantage PCR Cloning kit. | | pPD95.77-bfp | GTACCGGTAGAAAAAATGT-
CAGAGCTTATTAAGGAGAATATG | ATTCTACGAATGCTAATTAAGC-
TTGTGACCCAGTTTGCTCGG | The gfp sequence of pPD95.77 was replaced with bfp by In- Fusion Advantage PCR Cloning kit. | | pPD95.77-P _{hyp7} bfp | GTACCGGTAGAAAAAGTT-
GCAGAAAAATATTTCACTGTTTCAC | ACCAAGCTTGGGTCTGGGATT-
TTTGATCTGCAAATATTGAC | P _{hyp7} was amplified from N2
genomic DNA and inserted into
pPD95.77-bfp::unc-54 3'utr
plasmid via In-Fusion Advantage
PCR Cloning kit. | | pPD95.77-P _{hyp7} ctns-
1:: bfp | CAGATCAAAAATCCCATG-
AGTTTCCCGGTGGCATTTTTG | GGTACCAAGCTTGGGTCTGTCA-
TGTACAATAATAGGTTCCG | ctns-1 was amplified from N2
genomic DNA and inserted into
the pPD95.77-P _{hyp7} ::bfp plasmid
via In-Fusion Advantage PCR
cloning kit. | | pPD49.26-P _{hyp7} bfp::
rab-7 | na | na | rab-7 genomic DNA was digested from pPD49.26-P _{ced-1} ::gfp::rab-7 with Kpnl. Then, it was inserted into vector via the Kpnl site. | MCS, multiple cloning site; na, not available.