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Figure S1.  Depletion of Cyclin A2 in NIH3T3 cells induces changes of several parameters. (A) Quantification of residual Cyclin A2 protein after treatment 
with the different shRNAs (sh a–e) in a representative experiment. (B) Actin cytoskeleton corticalization after phalloidin staining after Cyclin A2 depletion 
induced by shRNA a (sh a) or shRNA b (sh b). Bars, 20 µM. (C) Cell cycle distribution of shLuc and shCycA2 NIH3T3 cells after release from a confluence 
block. Data are represented as means ± SEM (**, P = 0.0014; n = 3). (D) Growth curve of shLuc and shCycA2 NIH3T3 cells over a period of 7 d. (E, left) 
Western blot analysis of p21 and p27 expression in Cyclin A2–deficient cells. (right) Corresponding quantifications of three independent experiments. Mo-
lecular markers are given in kilodaltons. *, P = 0.0318. (F and G) Cell diameter (F) and cell volume (G) quantifications after Cyclin A2 depletion by shRNA 
(*, P = 0.05; n = 3). (H) Analysis of cell adherence on the plastic surface of Cyclin A2–deficient cells by comparison with shLuc-treated cells (**, P = 0.004; 
n = 3). Data are means ± SEM.
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Figure S2.  Cyclin A2 depletion affects cell size and morphology. (A) Classification of the various morphologies (spread, elongated, or rounded) of 
shCycA2 NIH3T3 by comparison with shLuc-treated cells of a representative experiment. Bars, 20 µM. (B and C) Quantification of spread areas (in mi-
crometers squared; B) and perimeters (in micrometers; C) of shLuc and shCycA2 cells. (left) Cell distribution of the measured parameters. (right) Correspond-
ing mean values represented as means ± SEM (n = 3). (D and E). Surface in micrometers squared (D) or percentage (E) of the extensions relative to that of 
the cell body delineated by the best circle included in the cell shape. **, P = 0.0014. (F and G) Rescue of WT cell surface (in micrometers squared; F) and 
cell perimeter (in micrometers; G) after Cyclin A2 expression in Cyclin A2–deficient or WT NIH3T3 cells. In this figure, all the quantifications were per-
formed on 220–250 spread cells. Data are means ± SEM. ****, P < 0.0001.
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Figure S3.  Depletion of Cyclin A2 in different cell lines induces Actin cytoskeleton and adhesion plaques rearrangements as in mouse NIH3T3 cells. (A, C, 
and E) Immunofluorescence analysis using phalloidin-rhodamine (red) and Vinculin (green) stainings. (A and B) Primary human skin fibroblasts. (C and D) 
U2OS cells. (E and F) p27/ mouse embryonic fibroblasts. Bars, 20 µm. (B, D, and F) Western blot analysis of Cyclin A2 expression in shLuc and shCycA2 
cells. Molecular markers are given in kilodaltons. CTR, control.
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Figure S4.  Cyclin A2 interactions with Rho GTPases. (A) Coimmunoprecipitation of endogenous Cyclin A2 with RhoA wild type (WT), dominant-negative 
RhoAN19, and constitutively active RhoAV14. Cell lysates obtained from NIH3T3 cells transfected with the different RhoA isoforms fused to GFP were im-
munoprecipitated (IP) by GFP-Trap beads. Interaction between the two molecules was detected after blotting with an anti–Cyclin A2 antibody after GFP 
pull-down. (B and D) Coimmunoprecipitation of endogenous Cyclin A2 with RhoC (B) and RhoB (D). NIH3T3 cell lysates overexpressing RhoC (B) or RhoB 
(D) were obtained after transfection of RhoC-EGFP and RhoB-EGFP, respectively. Cyclin A2 was detected using an anti–Cyclin A2 antibody after pull-down 
of GFP complexes. (C) Immunodetection by Western blotting of RhoB expression in NIH3T3 cells by comparison to the normal mouse mammary gland epi-
thelial cell (NMuMG) cell line. (E) Absence of interaction between Rac1 and Cyclin A2. Complexes were precipitated from lysates derived from cells over-
expressing Rac1-GFP as described in B (the asterisk marks the band corresponding to the Rac1-GFP protein). Molecular markers are given in kilodaltons.
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Figure S5.  Reintroduction of WT or mutant Cyclin A2 into Cyclin A2–deficient NIH3T3 cells reduces their migration ability to the level of WT cells. (A) 
Wound-healing migration assay performed on confluent NIH3T3 cells infected with shLuc or shCycA2 and then transfected with an empty vector (Mock) or 
vectors expressing WT or Mut2-CycA2. Pictures were taken at time of scratch (t = 0), 5, and 21 h afterward. Black dotted lines indicate scratch limits. (B) 
Graph represents migration speeds normalized with shLuc value (*, P = 0.031 for mock infected shCycA2; *, P = 0.05 for shCycA2 cells expressing Mut2; 
n = 3). Data are means ± SEM.

Video 1.  NIH3T3 cells were infected with shLuc retrovirus. Cells were maintained at 37°C in humidified chamber, and their 
migration, in a wound-healing assay, was viewed by time-lapse microscopy using a microscope (Axiovert 200M) with a 10× 
Plan Neofluar 0.3 NA. Frames were taken every 5 min for 22 h. Images were collected using a camera (Micromax YHS 
13001) monitored by MetaMorph software. This video corresponds to Fig. 7.

Video 2.  NIH3T3 cells were infected shCycA2 retrovirus. Cells were maintained at 37°C in a humidified chamber, and their 
migration, in a wound-healing assay, was viewed by time-lapse microscopy using a microscope (Axiovert 200M) with a 10× 
Plan Neofluar 0.3 NA. Frames were taken every 5 min for 22 h. Images were collected using a camera (Micromax YHS 
13001) monitored by MetaMorph software. This video corresponds to Fig. 7.


