Vacher et al., http://www.jcb.org/cgi/content/full/jcb.201007113/DC1

Α	Heterologous cells	
Phosphorylation site	HEK 293	COS-1
pS9	+	+
pS20	+	-
pS31	-	-
pS112	+	+

^{+,} identified phosphorylation site; -, phosphorylation site not identified

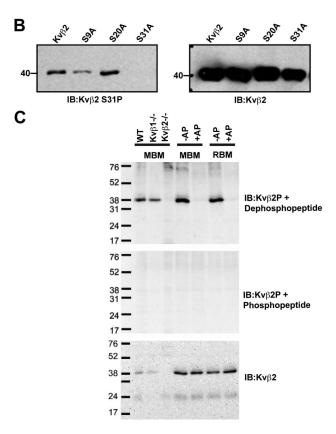


Figure S1. **Kvβ2 phosphorylation in heterologous cells and in mammalian brain.** (A) Identification of phosphosites present on recombinant rat Kvβ2 heterologously expressed in two mammalian kidney cell lines: HEK293 and COS-1. Using LC-MS/MS, phosphosites at S9, S20, and S112 on WT Kvβ2 expressed in HEK293 cells, and S9 and S112 on WT Kvβ2 expressed in COS-1 cells were identified. (B) Immunoblots of lysates of WT Kvβ2 or Kvβ2 mutants expressed in COS-1 cells using the Kvβ2P phosphospecific Ab or anti-Kvβ2 mAb K25/73. Robust Kvβ2P immunoreactivity was observed against WT Kvβ2, S9A, and S20A, whereas no immunoreactivity was observed against S31A. (C) Immunoblots on equal amounts (30 μ g) of brain membrane samples. MBM: WT, Kvβ1^{-/-}, and Kvβ2^{-/-} (samples courtesy of Dr. Geoff Murphy, University of Michigan, Ann Arbor, MI). RBM and MBM^{+/-} AP treatment. Immunoblots were probed with Kvβ2P Ab preincubated overnight with 5 μ g/ml of Kvβ2P dephosphopeptide (top), Kvβ2P Ab preincubated overnight with 5 μ g/ml of Kvβ2P phosphopeptide (middle), or anti-Kvβ2 mAb K25/73.

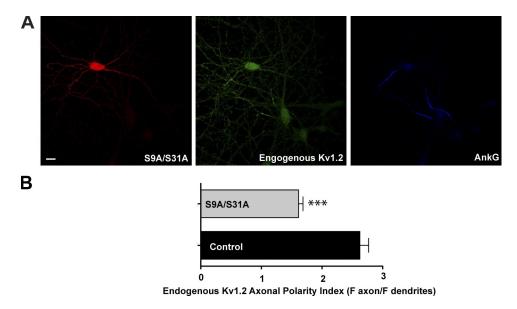


Figure S2. **Effect of Kv\beta2 S9A/S31A mutant on endogenous Kv1.2 axonal distribution.** (A) Cultured hippocampal neurons (10 DIV) were transfected with Kv β 2 S9A/S31A. 5 d after transfection, neurons were immunostained with anti-Kv β 2, anti-Kv1.2, and anti-AnkG Abs. Bar, 25 μ m. (B) Endogenous Kv1.2 axonal polarity index was determined by quantifying the immunofluorescence intensity profiles of the AIS versus three dendritic branches of either transfected or nontransfected (control) neurons using NIH Neuron/J. Control Kv1.2 API = 2.62 \pm 0.14, n = 25; S9A/S31A Kv1.2 API = 1.61 \pm 0.07, n = 24. ***, P < 0.0001 two-tailed t test.

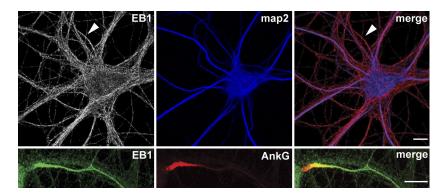


Figure S3. Subcellular distribution of EB1 in cultured hippocampal neurons at 21 DIV. Neurons were immunostained with anti-EB1 Ab. MAP2 immunostaining marks the somatodendritic compartment, and Ank-G immunostaining marks the AIS. EB1 exhibits a preferential axonal localization with enrichment in the AIS. Bars: 20 µm (top) and 10 µm (bottom).

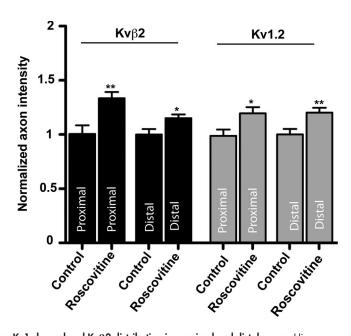


Figure S4. Effect of Cdk inhibition on Kv1 channel and Kv β 2 distribution in proximal and distal axons. Hippocampal neurons (21 DIV) with or without 10 μ M roscovitine treatment for 24 h were multiple immunofluorescence stained for Kv β 2 and Kv1.2, with Ank-G as a specific marker of the AIS. The average fluorescence intensity for a 50- μ m-long section located to the proximal axon (just after the AIS) or in the distal axon (at least 200 μ m from the AIS) was quantified using NIH Neuron/J and subjected to statistical analysis using PRISM 5 (n=15). *, P<0.05; **, P<0.01.

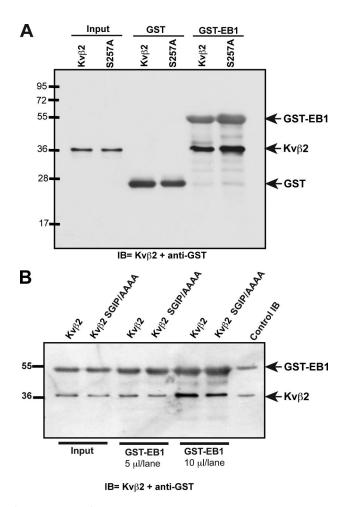


Figure S5. **Effect of the mutagenesis of Kv\beta2 SGIP motif on its interaction with EB1.** (A) Input and products of GST pull-down reactions performed with GST-EB1 on Kv β 2 or Kv β 2 S257A COS-lysates. GST was used as a negative control. The gel was blotted at the same time with anti-Kv β 2 (K25/73) and anti-GST (rabbit polyclonal E93) Abs. (B) Input and products of GST pull-down reactions performed with GST-EB1 on purified Kv β 2 or Kv β 2 SGIP/AAAA proteins (bacterially expressed and precision protease cleaved). The gel was simultaneously blotted with anti-Kv β 2 mAb K25/73 and anti-GST Ab E93.