Maghzal et al., http://www.jcb.org/cgi/content/full/jcb.201004074/DC1

CLUSTAL 2.0.12 multiple sequence alignment

EpCAM Multiple Sequence Alignment Xenopus & vertebrates

XEMCAMA -----MCLVLVAQVQSQCKCRTHYMGKCDNSGASSDCQCTLTIG 40

```
xEmCAMb
                     MKFVSVLRLG-----AALMCLVLVTRAQNPGCKCKTHYLGKCDNSGASSDCQCALSIG 53
                     MHLSTVLRLG-----AALLCFALVAQAQSPGCTCSTLYMGKCDNSGAG-GCQCTLAIG 52
MAPPQVLAF-----GLLLAAATATFAAAQEECVCENYKLAVNCFVNNNRQCQCT-SVG 52
xtEpCAM
hEpCAM1
mEpCAM1
                     MAGPQALAF-----GLLLAVVTATLAAAQRDCVCDNYKLATSCSLNEYGECQCT-SYG 52
                     MELLRGAAL-----LLLLCAA----ACAQDSCTCTKNKRVTNCRLIDN-VCHCN-SIG 47
MARGPGLAPPPLRLPLLLLVLAAVTGHTAAQDNCTCPTNKMTVCSPDGPGGRCQCR-ALG 59
CEpCAM
hEpCAM2
mEpCAM2
                     MARGLDLAP-----LLLLLLAMATRFCTAQSNCTCPTNKMTVCDTNGPGGVCQCR-AMG 53
MK------VLVALFVVALVD-VTSQCTCKTMKWANCDD----SCSCSLTLT 40
zEpCAM1
zEpCAM2
                     MK-----SCSCSLTLT 41
                     P-DSQPVNCSKLIPKCWLMKRESL---GTKAGR-RVKP-AQALIDNDGLYNPECDTNGVF 94
xEmCAMa
                     P-ASQAVDCTKLIPKCWLMKRESL---GTKAGR-RVKP-VQALIDNDGLYDPECETNGVF 107
T-ATQSINCSALIPKCWLMKRESL---GTKAGR-RVKP-VQALVDNDGLYDPECDVNGVF 106
--AQNTVICSKLAAKCLVMKAEMN---GSKLGR-RAKP-EGALQNNDGLYDPDCDESGLF 105
xEmCAMb
xtEpCAM
hEpCAM1
mEpCAM1
                     --TQNTVICSKLASKCLAMKAEMT---HSKSGR-RIKP-EGAIQNNDGLYDPDCDEQGLF 105
                     --SSVPVNCEILTSKCLLMKAEMA---NTKSGR-REKP-KDALQDTDGLYDPECENNGLF 100
--SGMAVDCSTLTSKCLLLKARMS---APKNARTLVRPSEHALVDNDGLYDPDCDPEGRF 114
cEpCAM
hEpCAM2
mEpCAM2
                     --SQVLVDCSTLTSKCLLLKARMS---ARKSGRSLVMPSEHAILDNDGLYDPECDDKGRF 108
zEpCAM1
                     ESSKOTLDCSKLVPKCFLMKAEMYRARHNLGTRKTGKPDENAFVDNDGIYDPECOSDGKF 100
zEpCAM2
                     ESSTQTLNCSKLVPKCFLMQAEMYRACNHQDTRSGGKPVETAFVDNDGIYDPVCESDGKF 101
                     хЕрСАМа
xEpCAMb
                     KARQCNNTDTCWCVNTAGVRRTDKGDKNWKCPELVRTNWVIVEMKRNNSDS-VNDDVLIQ 166
                     KARQCNNTDTCWCVNSAGVRRTDKGDKNWKCPELVKTNWVIVEMKRNGTES-VSDADLLQ 165
KAKQCNGTSTCWCVNTAGVRRTDK-DTEITCSERVRTYWIIIELKHKAREKPYDSKSLRT 164
KAKQCNGTATCWCVNTAGVRRTDK-DTEITCSERVRTYWIIIELKHKERESPYDHQSLQT 164
xtEpCAM
hEpCAM1
mEpCAM1
                     KARQCNGT-TCWCVNTAGVRRTDKHDTDLKCNQLVRTTWIIIEMRHAERKTPLNAESLTR 159
KARQCNQTSVCWCVNSVGVRRTDKGDLSLRCDELVRTHHILIDLRHPPTAGAFNHSDLDA 174
cEpCAM
hEpCAM2
mEpCAM2
                     KARQCNQTSVCWCVNSVGVRRTDKGDQSLRCDEVVRTHHILIELRHRPTDRAFNHSDLDS 168
                     KAVQCNNTEVCKCVNSAGVRRSDKKDKNIKC-EPAETYWVRAEMTHKSVDVPIDVANLRM 159
KAVQCNNTEVCKCVNSAGVRRSDKKDKNIKC-EPAETYWVRVEMKHKSVDVPIDATKLRT 160
zEpCAM1
zEpCAM2
                     ** *** * .***** .***** .* * .* : .* : :: .* *

ALKTTIVNRYGLPEKCVSVELEGPS--LIYVDLKQNGSQKLPGEVDITDVAYYMEKDIKG 211
xEmCAMa
                     ALKTTILNRYGLPEKYVSVELEGSS--FIYIDLKQNGTQKLPGEVDITDVGYYMEKDIKG 224
xEmCAMb
xtEpCAM
                     ALKTTITNRYGLPDKYISVELETP---LIYIDLKQNTSQKLPGEVDITDVAYYMEKDVKG 222
ALQKEITTRYQLDPKFITSILYENN--VITIDLVQNSSQKTQNDVDIADVAYYFEKDVKG 222
hEpCAM1
mEpCAM1
                     ALQEAFTSRYKLNQKFIKNIMYENN--VITIDLMQNSSQKTQDDVDIADVAYYFEKDVKG 222
сЕрСАМ
                     YLKDTITSRYMLDGRYISGVVYENP--TITIDLKQNSSDKTPGDVDITDVAYYFEKDVKD 217
ELRRLFRERYRLHPKFVAAVHYEQP--TIQIELRQNTSQKAAGDVDIDDAAYYFERDIKG 232
hEpCAM2
mEpCAM2
                     ELRRLFQERYKLHPSFLSAVHYEEP--TIQIELRQNASQKGLRDVDIADAAYYFERDIKG 226
                     GIENALQQRYFLDKNFVSEVQYDKDARLIVVDVKKDKNDR---TTDLSLMTYYLEKDIKV 216
GIENVLQQRYGLDKKLVSEVQYDKDGRLIVVDVKKDKDDR---TTDLSLMTYYMEKDIKV 217
zEpCAM1
zEpCAM2
                     xEmCAMa
xEmCAMb
                     DSLFPANNQFQILANGNKISVKEP--MIYYIDEKPHEISMRHLTPGVIAVIVVVVLAVVA 280
ESLFHS-KKMDLTVNGEQLDLDPGQTLIYYVDEKAPEFSMQGLKAGVIAVIVVVVIAVVA 281
xtEpCAM
hEpCAM1
mEpCAM1
                     ESLFHSSKSMDLRVNGEPLDLDPGQTLIYYVDEKAPEFSMQGLTAGIIAVIVVVSLAVIA 282
                     DSIFLN-NKLNMNIDNEELKFDN--MMVYYVDEVPPEFSMKSLTAGVIAVIVIVVLAIVA 274
ESLFQGRGGLDLRVRGEPLQVER--TLIYYLDEIPPKFSMKRLTAGLIAVIVVVVVALVA 290
cEpCAM
hEpCAM2
                     ESLFMGRRGLDVQVRGEPLHVER--TLIYYLDEKPPQFSMKRLTAGVIAVIAVVSVAVVA 284
mEpCAM2
                     KPLFSDEKPFVLSVQGKNVTMEN--VLIYYVDDKAPTFTMQKLTGGIIAVIVVVSLIVIG 274
LPLFWNGQPFEVDVPGTKVSMEN--VLIYYVDDRAPTFTMQKLTGGIIAVIVVVSLIVIG 275
zEpCAM1
zEpCAM2
                     xEmCAMa
xEmCAMb
                                                                             Accession Numbers
xtEpCAM
                     LIAVLIFTRRKK-ARYQKAEMKELNEMQKEVST 312
                                                                             •xEmCAMa: Xenopus laevis NP_001086975
hEpCAM1
mEpCAM1
                     GIVVLVISRKKRMAKYEKAEIKEMGEMHRELNA 314
                                                                             •xEmCAMb: Xenopus laevis AAN86618
                     GIVVLVISTRKKSAKYEKAEIKEMGEIHRELNA 315
                                                                             xtEpCAM: Xenopus tropicalis AAH84898
                     GIIGLVLSRRRK-GKYVKAEMKEMNEMHRGLNA 306
GMAVLVITNRRKSGKYKKVEIKELGELRKEPSL 323
cEpCAM
                                                                             •hEpCAM1: Homo sapiens AAH14785
hEpCAM2
                     GVVVLVVTKRRKSGKYKKVELKELGEMRSEPSL 317
                                                                             •hEpCAM2: Homo sapiens CAG47056
mEpCAM2
                     GFLVLFFLARRQKAHYSKAQAREMETIS---- 302
GFLVLFFLARRQKAQYSKAQAREMETIS---- 303
zEpCAM1
                                                                             •mEpCAM1: Mus musculus NP_032558
zEpCAM2
                                                                             •mEpCAM2: Mus musculus NP_064431
                      . *.. ::: .:* *.: :*: :
                                                                             •cEpCAM: Gallus gallus NP_001012582
                                                                             •zEpCAM1: Danio rerio NP_998340
                                                                             •zEpCAM2: Danio rerio NP_001017593
```

Figure S1. Amino acid sequences of Xenopus laevis EpCAMa and b pseudoalleles and alignement with EpCAMs of representative vertebrate species.

Figure S2. Structure-function analysis of EpCAM. (A) Diagram of the EpCAM constructs used in this study. The transmembrane (TM) and cytoplasmic (Ctail) domains and the 6xmyc tag, but not the extracellular domain (ECD), are presented on scale. (B) C-terminally myc-tagged EpCAM has the same tissue-mixing activity as wild-type EpCAM. (C) The mixing activity resides in specific residues of the cytoplasmic tail proximal to the transmembrane domain.

 Δ E253 Δ E247

ΔEQQ ΔENQ

GFP

Figure S3. **Epiboly rescue experiments using the following PKC inhibitors.** ChelCl, chelerythrine chloride; Calph, calphostin C; 20–28, PKC-20-28; Gö, Gö6976; Ro32, Ro32-0432; dnPKC- δ , dominant-negative PKC- δ ; PKC- ϵ i, PKC- ϵ i, nhibitor; PKC- δ i, inhibitor of atypical PKCs.

Figure S4. Selected frames from live time-lapse movies of BCRs expressing membrane GFP. Every second frame is shown (12-min time interval). Numbers: examples of cells with long-lived protrusions (arrows) or short-lived protrusions (small arrowheads indicate the beginning and the end, large arrowheads the peak of protrusion extension). Note that large extensions often appear to be constituted of two or more parts that behaved independently (thin and large arrows in the last column [EpCAM mRNA]). In those cases, each part was scored as separate protrusions.