

Figure S1. Chromosome morphology in ndt804 and hopls cells during meiosis. (A) Meiotic cells arrested at pachytene by ndt804. Yeast cells were induced for 8 h to undergo synchronous meiosis, and nuclear spreads were prepared. Rec8-3HA (red) and Sgo 1-9Myc (green) were detected with anti-HA (12CA5) and anti-Myc (9E10) antibodies; DNA (blue) was stained with DAPI. (B) Hop 1 localization in wild-type (WT) and $P_{\text {CLB2 }}$ PDS5 cells at pachytene. Yeast nuclear spreads were prepared from synchronous meiotic cultures and subjected to immunofluorescence as in A. Rec8-3HA (red) and Hop 1 (green) were detected using anti-HA (12CA5) and anti-Hop1 antibodies; DNA (blue) was stained by DAPI. (C) Chromosome morphology in $P_{\text {CLB2 }}$ PDS5 hop 1Δ cells at pachytene. Rec8-3HA (red), Sgol-9Myc (green), and DNA (blue) were detected as described in A.

Figure S2. Immunoblot analysis of Rec8 in wild-type and $P_{\text {CLB2 }}$ PDS5 cells during meiosis. Yeast cultures were induced to enter meiosis synchronously. Protein extracts were prepared at the indicated time points. Rec8 was detected with an anti-HA antibody. β-Tubulin served as a loading control. Rec8 persists in $P_{\text {CLB2 }}$ PDS5 cells because they are blocked at prophase I. (A) Protein samples were prepared on two separate blots. (B) Selected protein samples from A were prepared on the same blot. Four time points are shown from each strain. WT, wild type.

Figure S3. FACS analysis of Shase progression during meiosis. Yeast cultures were induced to undergo synchronous meiosis. Aliquots were withdrawn at the indicated times, fixed with $70 \% \mathrm{EtOH}$, stained with propidium iodide, and sorted by a cell-sorting system (FACSAria; BD). WT, wild type.

Figure S4. Zip3 is required for SC formation and Rec8 is required for LE formation. Yeast cultures were induced to undergo synchronous meiosis. Nuclear spreads were prepared for immunofluorescence after 8 h of induction. (A) Zip 1 localization in zip3 3 and zip3 $3 \Delta P_{\text {CLB2 }} P D S 5$ cells. Zip 1 (green) was detected with anti-Zipl antibody and DNA (red) stained by DAPI. Arrows indicate the polycomplex. (B) Quantification of polycomplex formation in zip3D and zip3 $P_{\text {CIB2 }}$ PDS5 cells at pachytene. At least 25 cells were counted. Error bars indicate SD. (C) Red localization in rec84 and rec $8 \Delta P_{\text {CLB2 }} P D S 5$ cells. Red 1 (green) was detected with anti-Red1 antibody and DNA (red) stained by DAPI.

Figure S5. Localization of Zipl and Sgol in meiotic cells without Spollactivity. Yeast cultures were induced to undergo synchronous meiosis. Nuclear spreads were prepared for immunofluorescence after 6 h of induction. Note that Zipl staining only partially overlaps with that of Sgol.

Table S1. Yeast strains used in this study

Strain names	Genotype
NH144	MATa, leu2dhisG, his4-x, ura3, lys2, hoدLYS2 MATa, leu2-k, arg4-Nsp, ura3, lys2, hodLYS2
HY1276	MATa, his4, leu2, P ClB2 PDS5::KANMX4, REC8-3HA::URA3,SGO1-9myc MATa, arg4, leu2, $P_{\text {СІв2 } 2}$ PDS5::KAN, REC8-3HA::URA3, SGO1-9myc
HY1276C	MATa, arg4, leu2, his4, REC8-3HA::URA3,SGO1-9MYC MATa, his4, leu2, REC8-3HA::URA3,SGO1-9MYC
HY1277	MATa, his4-x, ura3, leu2, P CLB2 PDS5::KANMX4 MAT , arg4-Nsp, ura3, leu2, P ${ }_{\text {CLB2 }}$ PDS5::KANMX4
HY1285	MATa arg4, leu2, his4, REC8-3HA::URA3,SGO1-9MYC, P ClB2 PDS5::KAN, ndt80ДKAN MATa leu2, his4, REC8-3HA:: $_{\text {P }}$ URA3,SGO1-9MYC, P ClB2 $2^{\text {PDS } 5:: K A N, ~ n d+80 \triangle K A N ~}$
HY1297	MATa arg4, leu2, P ${ }_{\text {ClB2 } 2}$ PDS5::KAN, REC8-3HA::URA3,SGO1-9myc, spoll-Y135F::HB MATa leu2, $P_{\text {ClB2 } 2}$ PDS5::KAN, REC8-3HA::URA3,SGO1-9myc, spol1-Y135F::HB
HY1297C	MATa arg4, leu2, his4, REC8-3HA::URA3,SGO1-9myc, spol1-Y135F::HB MATa leu2, his4, REC8-3HA::URA3,spoll-Y135F::HB
HY1298	
HY1298C	MATa arg4-Nsp his4-x leu2 trp 1 ura3 MATa arg4-Bgl his4-B leu2 trp 1 ura3
HY1299	MATa his4, leu2, REC8-3HA::URA3,SGO1-9myc, ndt80DKAN MATa arg4, his4, leu2, REC8-3HA::URA3,SGO1-9myc, ndt80دKAN
HY1325	MATa ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, P ${ }_{\text {ClB2 } 2}$ PDS5::KAN, nd+804HB, REC8-3HA::URA3/ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, P ClB2 $^{\text {PDS5::KAN, ndt80 }}$ HB, REC8-3HA::URA3
HY1325C	MATa arg4, ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, ndt80AHB, REC8-3HA::URA3 MAT α ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, ndt80دHB, REC8-3HA::URA3
HY1332	MATa his4, ura3, leu2, P ${ }_{\text {ClB2 }}$ PDS5::KANMX4, REC8-3HA::URA3,SGO1-9myc, zip 1Δ HB MAT α arg4, ura3, leu2, $P_{\text {СІв } 2 P D S 5:: K A N, ~ R E C 8-3 H A:: U R A 3, ~ S G O 1-9 m y c, ~ z i p ~}^{1 \Delta H B}$
HY1333	MATa leu2, his4, REC8-3HA::URA3,SGO1-9myc, zip 1 4 HB MATa leu2, his4, REC8-3HA::URA3, SGO1-9myc, zip 1 1 HB
HY1391	MATa ura3, leu2, CEN4::224lacO::CLONAT,TEL4::224lacO::CLONAT, his3::HIS3::Iacl-GFP::KAN, $P_{\text {CIB2 } 2}$ PDS5::HB MATa his3, leu2, $P_{\text {ClB2 }}$ PDS5::KANMX4, REC8-3HA::URA3, SGO1-9myc
HY1392	MATa arg4, leu2, his4, REC8-3HA::URA3,SGO1-9MYC MATa ura3, leu2, CEN4::224lacO::CLONAT, TEL4::224lacO::CLONAT, his3::HIS3::lacl-GFP::KAN
HY1419	
HY1419C	MATa his4, ura3, leu2, rec84HB MAT arg4, ura3, leu2, rec8 ${ }^{\text {HB }}$
HY1534	MAT α leu2, ura3, arg4, REC8-3HA::URA3, sir2دCLONAT
HY1535	MAT α leu2, ura3, arg4, REC8-3HA::URA3, $\mathrm{P}_{\text {CIB2 }}$ PDS5::KANMX4, sir2::CLONAT
HY1541	ura3, leu2, his $4, P_{\text {cup } 1} M C D 1:: K A N, P_{\text {ClB2 } 2} P D S 5:: K A N M X 4$, rec $8 \Delta H B$ MAT α ura3, leu2, $P_{\text {Cup } 1 M C D ~} 1:: K A N$, $P_{\text {Cl132 } 2}$ PDS5::KANMX4, rec8 8 HB
HY1542	
HY1608	
HY1609	MATa arg4, leu2, zip 1 H HB MATa arg4, ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, zip 1 4 HB
HY1611	MATa arg4, ura3::tetOx224::URA3, leu2::tetR-GFP::LEU2, zip1AHB, P ${ }_{\text {CIB2 }}$ PDS5::KANMX4 MATa leu2, his4, Rec8-3HA::URA3, zip 14HB, $P_{\text {ClB2 }}$ PDS5::KANMX4
HY1636	MATa ura3, leu2, P Cup MCD $1:: K A N, P_{\text {Clв2 }}$ PDS5::KAN, rec8 8 HB, URA3 ::tetO::URA3, LEU2::tetR-GFP MAT α ura3, leu2, his $4, P_{\text {Cup } 1}$ MCD $1:: K A N, P_{\text {Cl\|22 }}$ PDS5::KAN, rec $8 \Delta H B$
HY1637	MATa ura3, leu2, arg4, $P_{\text {Cup } 1 \text { MCD } 1:: K A N, ~ r e c 8 \Delta H B, ~ U R A 3:: t e t O:: U R A 3, ~ L E U 2:: t e t R-G F P ~ M A T \alpha ~ u r a 3, ~ l e u 2, ~ h i s 4, ~}^{\text {, }}$ $P_{\text {Cup } 1 M C D 1:: K A N, ~ r e c 8 \Delta H B ~}^{\text {I }}$

