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Supplemental discussion 
In the absence of lateral constraints, the critical force is given by the equation 
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where the prefactor A depends on the boundary conditions. If the ends are free to pivot, 
2A π=  ( 10≈ ); if one end is clamped, 20A ≈ ; if both ends are clamped, 24A π=  ( 40≈ ) 

(Landau and Lifshitz, 1986; Dogterom and Yurke, 1997). 

In the constrained buckling equation, for a homogenous, incompressible, isotropic 
medium,α  is given by the equation 
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where l is a characteristic length scale of the buckling (i.e., the wavelength, which we 
observe to be on the order a few micrometers for microtubules) and a is a microscopic 
length of order for the rod radius, which is �10 nm for microtubules (Landau and 
Lifshitz, 1986). For microtubules, we thus have the following equation: 

4 2.7 .
ln(100)

G Gπα ≈ ≈  

To solve this equation, we look for solutions of mechanical equilibrium, for which  
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 which implies '''' '' 0u fu uκ α+ + = . The solutions to this equation are of the form u ≈ 
ikxe . Oscillatory buckling solutions are given by purely real wavevector k. Thus, we must 

solve 4 2 0k fkκ α− + = , for which the solution is the following equation: 
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The solutions for k are real only for compressive forces that exceed a finite critical or 
threshold value of 2cf κα= . This is the analogue of the finite Euler buckling threshold 
for an isolated elastic rod. The corresponding buckling wavelength of the response is the 
following equation: 
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It is important to note that for the same boundary conditions (pivoting or clamped), 
the prefactors in the expression for the critical buckling force are the same for both long- 
and short-wavelength buckling. Thus, for instance, when comparing the Euler buckling of 
a microtubule of length L with the case of buckling with a short wavelength λ, there is an 
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overall multiplicative increase of the bucking force (without constraints) given by the 
following factor: 
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The factor of 4 comes from the fact that Euler buckling of a rod of length L 
corresponds to a half wavelength that is equal to L. In the final expression, including 
lateral constraints, there is an additional factor of 2, giving the following equation: 
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This has a very simple interpretation in terms of the competition between bending and 
elastic deformation of the surrounding medium; in mechanical equilibrium, these are just 
balanced, meaning that the additional force coming from elastic constraint is equal to the 
bending contribution. This results in a simple doubling of the total force. 

In this analysis, we have made no assumptions about whether the surrounding 
network physically adheres to the rod or not; transverse motion will, in any case, displace 
the surrounding network because of topological entanglements. However, adhesion of the 
rod to the network can set a decay length for longitudinal forces because a compressive 
force applied at one end of the rod will be transferred to the network if there are physical 
connections between the two. The extreme case of this is a no-slip condition, in which 
longitudinal displacement of the rod locally drags the network with it. In this case, we 
expect a force balance between the compression/stretching of the rod (without bending) 
and the elasticity of the surrounding network. The former is characterized by a Young’s 
modulus, 2

MTE aμ π≈ , where MTE represents the elastic modulus of the tubulin making up 
the microtubule, which is expected (de Pablo et al., 2003) to be �1 GPa. A simple 
scaling analysis suggests that a no-slip condition leads to a decay length on the order of 

/ /MTa E Gμ α ≈ . A similar expression for the decay length is known from shear lag 
models of composite materials (Hull and Clyne, 1996). In the cell, microtubules are 
physically connected (and not simply sterically coupled) to the surrounding cytoskeletal 
network (Svitkina et al., 1995), and, thus, a no-slip condition should hold. We thus expect 
the short-wavelength buckling to decay away from the tips of compressively loaded 
microtubules at the cell edge; the scaling analysis suggests this should be �10 μm for 
microtubules in an elastic network of shear modulus 1 kPa, which is consistent with our 
observations (Figs. 1 and 2). Moreover, in cytochalsin-treated cells, the decay length 
appeared to be significantly increased, as predicted from this scaling (unpublished data). 
In the macroscopic experiment, we also observed a decay in buckling amplitude (Fig. 6). 
By embedding fluorescent tracer particles, we confirmed that the gelatin physically sticks 
to the plastic rod, imposing a no-slip condition. Thus, we expect the amplitude will decay 
over a length of �10 cm, which is also consistent with our observations. We note that in 
the cell, the no-slip condition may be modified by dynamic cross-links between 
microtubules and actin, which could therefore significantly increase this distance of force 
transmission. 
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